×

An operadic model for a mapping space and its associated spectral sequence. (English) Zbl 1123.55004

M. Mandel has proved that the homotopy category of nilpotent, \(p\)-complete spaces of finite type is equivalent to a full subcategory of the homotopy category of algebras over an \(\overline{\mathbb{F}}_p\)-operad \({\mathcal E}\). Here \(\overline{\mathbb{F}}_p\) denotes the closure of the finite field \(\mathbb{F}_p\). In this paper the authors construct an \({\mathcal E}\)-algebra model for a mapping space \({\mathcal F}(X, Y)\) when \(X\) is a finite simplicial set, \(Y\) is a connected nilpotent simplicial set of finite type and the connectivity of \(Y\) is greater than or equal to the dimension of \(X\). In this case, they also construct a left-half plane spectral sequence with \(E_2\)-term expressed in terms of the left derived functor of the Lannes’ division functor and converging to the cohomology of \({\mathcal F}(X, Y)\).

MSC:

55P48 Loop space machines and operads in algebraic topology
18D50 Operads (MSC2010)

References:

[1] Adams, J. F., Two Theorems of J. Lannes, (The Selected Works of J. Frank Adams, Vol. II (1992), Cambridge University Press: Cambridge University Press Cambridge), 515-524, Edited and with an introduction and biographical data by J.P. May and C.B. Thomas · Zbl 0758.01016
[2] Atiyah, M. F.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., 308, 523-615 (1982) · Zbl 0509.14014
[3] Barr, M.; Beck, J., Homology and standard constructions, (Seminar on Triples and Categorical Homology Theory. Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math., vol. 80 (1969), Springer), 245-335 · Zbl 0176.29003
[4] Berger, C.; Fresse, B., Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc., 137, 135-174 (2004) · Zbl 1056.55006
[5] Bökstedt, M.; Ottosen, I., Homotopy orbits of free loop spaces, Fund. Math., 162, 251-275 (1999) · Zbl 0952.55006
[6] Bökstedt, M.; Ottosen, I., A spectral sequence for string cohomology, Topology, 44, 1181-1212 (2005) · Zbl 1078.55008
[7] Bousfield, A. K., On the homology spectral sequence of a cosimplicial space, Amer. J. Math., 109, 361-394 (1987) · Zbl 0623.55009
[8] Bousfield, A. K.; Kan, D. M., The homotopy spectral sequence of a space with coefficients in a ring, Topology, 11, 76-106 (1972) · Zbl 0202.22803
[9] Bousfield, A. K.; Peterson, C.; Smith, L., The rational homology of function spaces, Arch. Math., 52, 275-283 (1989) · Zbl 0674.55008
[10] Brown, E. H.; Szczarba, R. H., On the rational homotopy type of function spaces, Trans. Amer. Math. Soc., 349, 4931-4951 (1997) · Zbl 0927.55012
[11] Chataur, D., Formes difféntielles généralisées sur une opérade et modèles algébriques des fibrations, Algebr. Geom. Topol., 2, 51-93 (2002) · Zbl 0994.18005
[12] Chataur, D.; Thomas, J.-C., \(E_\infty \)-model for a mapping space, Topology Appl., 145, 1-3, 191-204 (2004) · Zbl 1068.55017
[13] B. Fresse, Derived division functors and mapping spaces, 2002, Preprint arXiv:math.At/0208091; B. Fresse, Derived division functors and mapping spaces, 2002, Preprint arXiv:math.At/0208091
[14] E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, 1994, Preprint arXiv:hep-th/9403055; E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, 1994, Preprint arXiv:hep-th/9403055
[15] Haefliger, A., Rational homotopy of space of sections of a nilpotent bundle, Trans. Amer. Math. Soc., 207, 609-620 (1982) · Zbl 0508.55019
[16] Kono, A.; Kuribayashi, K., Module derivations and cohomological splitting of adjoint bundles, Fund. Math., 180, 199-221 (2003) · Zbl 1070.55012
[17] Kuribayashi, K., Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ., 39, 67-85 (1999) · Zbl 0938.55014
[18] Kuribayashi, K., Eilenberg-Moore spectral sequence calculation of function space cohomology, Manuscripta Math., 114, 305-325 (2004) · Zbl 1066.55015
[19] Mandell, M., \(E_\infty\) algebras and \(p\)-adic homotopy theory, Topology, 40, 1, 43-94 (2001) · Zbl 0974.55004
[20] Masbaum, G., On the cohomology of classifying space of the gauge group over some 4-complexes, Bull. Soc. Math. France, 119, 1-31 (1991) · Zbl 0729.57006
[21] McCleary, J., (A User’s Guide to Spectral Sequences. A User’s Guide to Spectral Sequences, Cambridge Studies in Advanced Mathematics, vol. 58 (2001)) · Zbl 0959.55001
[22] McClure, J. E.; Smith, J. H., Multivariable cochain operations and little \(n\)-cubes, J. Amer. Math. Soc., 16, 681-704 (2003) · Zbl 1014.18005
[23] May, J. P., (A general algebraic approach to Steenrod operations. A general algebraic approach to Steenrod operations, Lecture Notes in Math., vol. 168 (1970), Springer), 153-231 · Zbl 0242.55023
[24] Quillen, D. G., (Homotopical Algebra. Homotopical Algebra, Lecture Notes in Math., vol. 43 (1967), Springer) · Zbl 0168.20903
[25] Rector, D., Steenrod operations in the Eilenberg-Moore spectral sequence, Comment. Math. Helv., 45, 540-552 (1970) · Zbl 0209.27501
[26] Schwartz, L., Chicago Lectures in Mathematics (1994), University of Chicago Press · Zbl 0871.55001
[27] Smith, L., Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., 129, 58-93 (1967) · Zbl 0177.51402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.