×

Boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures. (English) Zbl 1122.93067

Summary: We consider the problem of boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures that are governed by unstable linear reaction-convection-diffusion equations. We extend boundary feedback control laws designed for the one-dimensional reaction-diffusion equation using the backstepping method to this higher-dimensional case. We show that, under certain mathematical conditions on the velocity field, boundary feedback controls similar to the ones for one-dimensional equations also works for the higher dimensional case and exponentially stabilize the homogeneous equilibrium zero at any given decay rate.

MSC:

93D10 Popov-type stability of feedback systems
93C20 Control/observation systems governed by partial differential equations
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] DOI: 10.1016/S0005-1098(03)00140-7 · Zbl 1055.93039 · doi:10.1016/S0005-1098(03)00140-7
[2] DOI: 10.1137/S036301290342601X · Zbl 1082.93016 · doi:10.1137/S036301290342601X
[3] Amamm H, Semigroup Theory and Applications pp 21– (1989)
[4] DOI: 10.1063/1.869083 · Zbl 1027.76662 · doi:10.1063/1.869083
[5] Balogh A, Proceedings of the 2001 American Control Conference 3 pp 2480– (2001)
[6] DOI: 10.3166/ejc.8.165-175 · Zbl 1293.93404 · doi:10.3166/ejc.8.165-175
[7] DOI: 10.1016/S0167-6911(03)00222-6 · Zbl 1157.93481 · doi:10.1016/S0167-6911(03)00222-6
[8] DOI: 10.1063/1.1333757 · doi:10.1063/1.1333757
[9] Burns JA, Proceedings of the 36th IEEE Conference on Decision and Control 3 pp 2243– (1998) · doi:10.1109/CDC.1997.657106
[10] Burns JA, Proceedings of the First International Conference on Nonlinear Problems in Aviation and Aerospace pp 67– (1996)
[11] DOI: 10.1016/0022-0396(77)90189-9 · Zbl 0407.35043 · doi:10.1016/0022-0396(77)90189-9
[12] Colton D, Analytic Theory of Partial Differential Equations (1980)
[13] Day WA, Quart. Appl. Math. 40 pp 468– (1982)
[14] Evans LC, Partial Differential Equations (1998)
[15] DOI: 10.1017/S002211200400984X · Zbl 1107.76072 · doi:10.1017/S002211200400984X
[16] DOI: 10.1103/PhysRevE.70.046224 · doi:10.1103/PhysRevE.70.046224
[17] DOI: 10.1016/S0376-0421(00)00008-7 · doi:10.1016/S0376-0421(00)00008-7
[18] DOI: 10.1063/1.2033908 · Zbl 1187.76207 · doi:10.1063/1.2033908
[19] Krstic M, IEEE Conference on Decision and Control pp 3164– (2005)
[20] Krstic M, IEEE Conference on Decision and Control pp 3170– (2005)
[21] DOI: 10.1007/BF01448392 · Zbl 0524.93052 · doi:10.1007/BF01448392
[22] DOI: 10.1137/0321047 · Zbl 0518.93046 · doi:10.1137/0321047
[23] DOI: 10.1007/BF01442189 · Zbl 0639.49002 · doi:10.1007/BF01442189
[24] DOI: 10.1007/BF01442191 · Zbl 0652.49026 · doi:10.1007/BF01442191
[25] DOI: 10.1137/S0363012902402414 · Zbl 1047.93042 · doi:10.1137/S0363012902402414
[26] Liu W, Physical Review E 72 pp 0163121– (2005)
[27] DOI: 10.1016/S0167-2789(03)00287-2 · Zbl 1098.76550 · doi:10.1016/S0167-2789(03)00287-2
[28] DOI: 10.1109/TAC.2004.838495 · Zbl 1365.93193 · doi:10.1109/TAC.2004.838495
[29] DOI: 10.1016/j.sysconle.2004.11.001 · Zbl 1129.93334 · doi:10.1016/j.sysconle.2004.11.001
[30] Smyshlyaev A, IEEE Conference on Decision and Control pp 1515– (2005)
[31] Smyshlyaev A, IEEE Conference on Decision and Control pp 1509– (2005)
[32] DOI: 10.1007/BF01442895 · Zbl 0434.35016 · doi:10.1007/BF01442895
[33] DOI: 10.1063/1.1588636 · Zbl 1186.76562 · doi:10.1063/1.1588636
[34] DOI: 10.1016/S1359-4311(02)00113-8 · doi:10.1016/S1359-4311(02)00113-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.