×

Numerical modeling of the KdV random wave field. (English) Zbl 1122.76020

Summary: The evolution of the initially random wave field with a Gaussian spectrum shape is studied numerically within the Korteweg–de Vries (KdV) equation. The properties of the KdV random wave field are analyzed: transition to a steady state, equilibrium spectra, statistical moments of a random wave field, and the distribution functions of the wave amplitudes. Numerical simulations are performed for different Ursell parameters and spectrum width. It is shown that the wave field relaxes to the stationary state (in statistical sense) with the almost uniform energy distribution in low frequency range (Rayleigh–Jeans spectrum). The wave field statistics differs from the Gaussian one. The growing of the positive skewness and non-monotonic behavior of the kurtosis with increase of the Ursell parameter are obtained. The probability of a large amplitude wave formation differs from the Rayleigh distribution.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M35 Stochastic analysis applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley · Zbl 0373.76001
[2] Newell, A. C., Solitons in Mathematics and Physics (1985), SIAM: SIAM Philadelphia, PA · Zbl 0565.35003
[3] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1993), Cambridge University Press · Zbl 0661.35001
[4] Engelbrecht, J., Nonlinear Wave Dynamics: Complexity and Simplicity (1997), Kluwer Acad. Publishers · Zbl 0913.76002
[5] Murawski, K., Analytical and Numerical Methods for Wave Propagation in Fluid Media (2002), World Scientific · Zbl 1008.76001
[6] Zabusky, N.; Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1965) · Zbl 1201.35174
[7] Salupere, A.; Peterson, P.; Engelbrecht, J., Long-time behaviour of soliton ensembles. Part 1 - Emergence of ensembles, Chaos, Solitons and Fractals, 14, 1413-1424 (2002) · Zbl 1037.35072
[8] Salupere, A.; Peterson, P.; Engelbrecht, J., Long-time behaviour of soliton ensembles. Part 2 - Periodical patterns of trajectorism, Chaos, Solitons and Fractals, 15, 29-40 (2003)
[9] Salupere, A.; Peterson, P.; Engelbrecht, J., Long-time behavior of soliton ensembles, Math. Comput. Simulation, 62, 137-147 (2003) · Zbl 1015.65056
[10] Salupere, A.; Maugin, G. A.; Engelbrecht, J.; Kalda, J., On the KdV soliton formation and discrete spectral analysis, Wave Motion, 123, 49-66 (1996) · Zbl 0968.76524
[11] Zakharov, V. E., Kinetic equation for solitons, Sov. Phys. JETP, 60, 993-1000 (1971)
[12] Osborne, A. R.; Segre, E.; Boffetta, G., Soliton basis states in shallow-water ocean surface waves, Phys. Rev. Lett., 67, 592-595 (1991)
[13] Osborne, A. R., Numerical construction of nonlinear wave-train solutions of the periodic Korteweg-de Vries equation, Phys. Rev. E, 48, 296-309 (1993)
[14] Osborne, A. R., Behavior of solitons in random-function solutions of the periodic Korteweg-de Vries equation, Phys. Rev. Lett., 71, 3115-3118 (1993)
[15] Osborne, A. R., Solitons in the periodic Korteweg-de Vries equation, the \(Θ\)-function representation, and the analysis of nonlinear, stochastic wave trains, Phys. Rev. E, 52, 1, 1105-1122 (1995)
[16] Osborne, A. R.; Petti, M., Laboratory-generated, shallow-water surface waves: analysis using the periodic, inverse scattering transform, Phys. Fluids, 6, 1727-1744 (1994)
[17] Osborne, A. R.; Serio, M.; Bergamasco, L.; Cavaleri, L., Solitons, cnoidal waves and nonlinear interactions in shallow-water ocean surface waves, Physica D, 123, 64-81 (1998) · Zbl 0952.76009
[18] Talipova, T. G.; Pelinovsky, E. N.; Kit, E.; Eitan, O., Nonlinear transformation of wave packets in weakly dispersive media, Radiophys. Quantum Electronics, 42, 4, 315-319 (1999)
[19] Kit, E.; Shemer, L.; Pelinovsky, E.; Talipova, T.; Eitan, O.; Jiao, H., Nonlinear wave group evolution in shallow water, J. Waterway, Port, Costal, Ocean Eng., 126, 221-228 (2000)
[20] Grimshaw, R.; Pelinovsky, D.; Pelinovsky, E.; Talipova, T., Wave group dynamics in weakly nonlinear long-wave models, Physica D, 159, 235-257 (2001)
[21] Groesen, E.; Westhuis, J. H., Modeling and simulation of surface water waves, Math. Comput. Simulation, 59, 341-360 (2002) · Zbl 1063.76059
[22] Onorato, M.; Ambrosi, D.; Osborne, A. R.; Serio, M., Instability of two quasi-monochromatic waves in shallow water, Phys. Fluids, 15, 3871-3874 (2003) · Zbl 1186.76405
[23] Pelinovsky, E.; Talipova, T.; Kharif, C., Nonlinear dispersive mechanism of the freak wave formation in shallow water, Physica D, 147, 83-94 (2000) · Zbl 0978.76014
[24] Kharif, C.; Pelinovsky, E.; Talipova, T., Formation de vagues géantes en eau peu profonde, C. R. Acad. Sci. Paris, Ser. IIb, 328, 801-807 (2000) · Zbl 1058.76542
[25] Kharif, C.; Pelinovsky, E., Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B Fluids, 22, 603-634 (2003) · Zbl 1058.76017
[26] Murray, A. C., Solutions of the Korteweg-de Vries equation from irregular data, Duke Math. J., 45, 149-181 (1978) · Zbl 0372.35022
[27] Onorato, M.; Osborne, A. R.; Serio, M.; Bertone, S., Freak wave in random oceanic sea states, Phys. Rev. Lett., 86, 5831-5834 (2001)
[28] Onorato, M.; Osborne, A. R.; Serio, M., Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, L25-L28 (2002) · Zbl 1185.76288
[29] Dysthe, K. B.; Trulsen, K.; Krogstad, H. E.; Socquet-Juglard, H., Evolution of a narrow-band spectrum of random surface gravity waves, J. Fluid Mech., 478, 1-10 (2003) · Zbl 1075.76014
[30] Berger, K. M.; Milewski, P. A., Simulation of wave interactions and turbulence in one-dimensional water waves, SIAM J. Appl. Math., 63, 1121-1140 (2003) · Zbl 1080.76013
[31] Tanaka, M., A method of studying of nonlinear random field, Fluid Dynam. Res., 28, 41-60 (2001)
[32] Annenkov, S. Yu.; Shrira, V. I., Numerical modelling of water-wave evolution based on the Zakharov equation, J. Fluid Mech., 449, 341-371 (2001) · Zbl 1030.76009
[33] Shemer, L.; Jiao, H.; Kit, E.; Agnon, Y., Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation, J. Fluid Mech., 427, 107-129 (2001) · Zbl 0967.76021
[34] Dyachenko, A. I.; Korotkevich, A. O.; Zakharov, V. E., Weak turbulence of gravity waves, JETP Lett., 77, 546-550 (2003)
[35] Majda, A. J.; McLaughlin, D. W.; Tabak, E. G., A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 6, 9-44 (1997) · Zbl 0882.76035
[36] Cai, D.; Majda, A. J.; McLaughlin, D. W.; Tabak, E. G., Dispersive wave turbulence in one dimension, Physica D, 152-153, 551-572 (2001) · Zbl 1049.76035
[37] Zakharov, V. E.; Guyenne, P.; Pushkarev, A. N.; Dias, F., Wave turbulence in one-dimensional models, Physica D, 152-153, 573-619 (2001) · Zbl 0986.76032
[38] Zakharov, V. E.; Falkovich, G.; Lvov, V. S., Kolmogorov Spectra of Turbulence, vol. 1, Wave Turbulence (1992), Springer: Springer Berlin · Zbl 0786.76002
[39] Zakharov, V. E., Statistical theory of gravity and capillary waves on the surface of finite-depth fluid, Eur. J. Mech. B Fluids, 18, 327-344 (1999) · Zbl 0960.76014
[40] Fronberg, B., A Practical Guide to Pseudospectral Methods (1998), Cambridge Univ. Press · Zbl 0912.65091
[41] Janssen, P. A.E. M., Nonlinear four-wave interactions and freak waves, J. Phys. Oceanogr., 33, 863-884 (2003)
[42] Onorato, M.; Osborne, A. R.; Serio, M.; Cavaleri, L., Modulational instability and non-Gaussian statistics in experimental random water-wave trains, Phys. Fluids, 17, 078101 (2005) · Zbl 1187.76391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.