×

Ramsey partitions and proximity data structures. (English) Zbl 1122.68043

Summary: This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The nonlinear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the nonlinear version of the isomorphic Dvoretzky theorem, as introduced by Bourgain, Figiel, and Milman). We then proceed to construct optimal Ramsey partitions, and use them to show that for every \(\varepsilon\in(0,1)\), every \(n\)-point metric space has a subset of size \(n^{1-\varepsilon}\) which embeds into Hilbert space with distortion \(O(1/\varepsilon)\). This result is best possible and improves part of the metric Ramsey theorem of Y. Bartal, N. Linial, M. Mendel and A. Naori [Ann. Math. (2) 162, 643–709 (2005; Zbl 1114.46007)], in addition to considerably simplifying its proof. We use our new Ramsey partitions to design approximate distance oracles with a universal constant query time, closing a gap left open by M. Thorup and U. Zwick in [J. Assoc. Comput. Mach. 52, 1–24 (2005)]. Namely, we show that for every \(n\)-point metric space \(X\), and \(k\geq 1\), there exists an \(O(k)\)-approximate distance oracle whose storage, requirement is \(O(n^{1+1/k})\), and whose query time is a universal constant. We also discuss applications of Ramsey partitions to various other geometric data structure problems, such as the design of efficient data structures for approximate ranking.

MSC:

68P05 Data structures
05D10 Ramsey theory
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Citations:

Zbl 1114.46007

References:

[1] Arora, S., Lee, J. R., Naor, A.: Euclidean distortion and the sparsest cut. In: STOC ’05: Proc. 37th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 553-562 (2005) · Zbl 1192.68870 · doi:10.1145/1060590.1060673
[2] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., Wu, A. Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45 , 891-923 (1998) · Zbl 1065.68650 · doi:10.1145/293347.293348
[3] Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear time construction of sparse neighborhood covers. SIAM J. Comput. 28 , 263-277 (1999) · Zbl 0943.05079 · doi:10.1137/S0097539794271898
[4] Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic application. In: 37th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, 184-193 (1996)
[5] Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey type phenomena. Ann. of Math. (2) 162 , 643-709 (2005) · Zbl 1114.46007 · doi:10.4007/annals.2005.162.643
[6] Bender, M. A., Farach-Colton, M.: The lca problem revisited. In: Proc. 4th Latin Amer. Symp. on Theor. Info., Springer, 88-94 (2000) · Zbl 0959.68133
[7] Bender, M. A., Farach-Colton, M.: The level ancestor problem simplified. Theoret. Comput. Sci. 321 , 5-12 (2004) · Zbl 1068.68047 · doi:10.1016/j.tcs.2003.05.002
[8] Bourgain, J., Figiel, T., Milman, V.: On Hilbertian subsets of finite metric spaces. Israel J. Math. 55 , 147-152 (1986) · Zbl 0634.46008 · doi:10.1007/BF02801990
[9] Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0-extension problem. SIAM J. Comput. 34 , 358-372 (2004/05) · Zbl 1087.68128 · doi:10.1137/S0097539701395978
[10] Callahan, P. B.: Dealing with higher dimensions: the well-separated pair decomposition and its applications. Ph.D. thesis, Dept. Comput. Sci., Johns Hopkins Univ., Baltimore, MD (1995)
[11] Callahan, P. B., Kosaraju, S.: A decomposition of multidimensional point sets with ap- plications to k-nearest-neighbors and n-body potential fields. J. ACM 42 , 67-90 (1995) · Zbl 0886.68078 · doi:10.1145/200836.200853
[12] Chawla, S., Gupta, A., Räcke, H.: Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut. In: SODA ’05: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA), SIAM, 102-111 (2005) · Zbl 1297.68234
[13] Clarkson, K. L.: Nearest-neighbor searching and metric space dimensions. In: Nearest- Neighbor Methods for Learning and Vision: Theory and Practice. MIT Press (2005); available at http://cm.bell-labs.com/who/clarkson/nn survey/p.pdf
[14] Cohen, E.: Fast algorithms for constructing t -spanners and paths with stretch t . SIAM J. Comput. 28 , 210-236 (1999) · Zbl 0915.68077 · doi:10.1137/S0097539794261295
[15] Cormen, T. H., Leiserson, C. E., Rivest, R. L.: Introduction to Algorithms. MIT Press (1990) · Zbl 1047.68161
[16] Erd\Acute\Acute os, P.: Extremal problems in graph theory. In: Theory of Graphs and its Appli- cations (Smolenice, 1963), Publ. House Czechoslovak Acad. Sci., Prague, 29-36 (1964) · Zbl 0161.20501
[17] Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. System Sci. 69 , 485-497 (2004) · Zbl 1071.68082 · doi:10.1016/j.jcss.2004.04.011
[18] Fefferman, C., Klartag, B.: Fitting Cm smooth functions to data I. Ann. of Math., to appear; available at http://www.math.princeton.edu/facultypapers/Fefferman/FittingData Part I.pdf (2005)
[19] Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles for geometric graphs. In: SODA ’02: Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, 2002), SIAM, 828-837 (2002) · Zbl 1058.65028
[20] Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics and their applications. SIAM J. Comput. 35 , 1148-1184 (2006) · Zbl 1100.68014 · doi:10.1137/S0097539704446281
[21] Harel, D., Tarjan, R. E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13 , 338-355 (1984) · Zbl 0535.68022 · doi:10.1137/0213024
[22] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001) · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[23] Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Handbook of Discrete and Computational Geometry, 2nd ed., CRC Press, Boca Raton, FL, 877-892 (2004)
[24] Krauthgamer, R., Lee, J. R., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. Geom. Funct. Anal. 15 , 839-858 (2005) · Zbl 1108.46010 · doi:10.1007/s00039-005-0527-6
[25] Lee, J. R., Naor, A.: Extending Lipschitz functions via random metric partitions. Invent. Math. 160 , 59-95 (2005) · Zbl 1074.46004 · doi:10.1007/s00222-004-0400-5
[26] Matou\check sek, J.: On the distortion required for embedding finite metric space into normed spaces. Israel J. Math. 93 , 333-344 (1996) · Zbl 0851.46007 · doi:10.1007/BF02761110
[27] Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Adv. Math. 189 , 451-494 (2004) · Zbl 1088.46007 · doi:10.1016/j.aim.2003.12.001
[28] Orchard, M. T.: A fast nearest-neighbor search algorithm. In: ICASSP ’91: Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 4, 2297-3000 (1991)
[29] Peleg, D.: Informative labeling schemes for graphs. Theoret. Comput. Sci. 340 , 577-593 (2005) · Zbl 1077.68078 · doi:10.1016/j.tcs.2005.03.015
[30] Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Automata, Languages and Programming, Lecture Notes in Comput. Sci. 3580, Springer, Berlin, 261-272 (2005) · Zbl 1082.68087 · doi:10.1007/11523468
[31] Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: STOC ’04: Proc. 36th Annual ACM Symposium on Theory of Computing (New York, 2004). ACM Press, 281-290 (2004) · Zbl 1192.68918 · doi:10.1145/1007352.1007399
[32] Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52 , 1-24 (2005) 4 , 101-115 (1989) · Zbl 0663.68058 · doi:10.1007/BF02187718
[33] Zwick, U.: Exact and approximate distances in graphs-a survey. In: Algorithms- ESA 2001 ( \ring Arhus), Lecture Notes in Comput. Sci. 2161, Springer, Berlin, 33-48 (2001) · Zbl 1006.68543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.