×

Expansion of derivatives in one-dimensional dynamics. (English) Zbl 1122.37310

Summary: We study the expansion of derivatives along orbits of real and complex one-dimensional maps \(f\), whose Julia set \(J_f\) attracts a finite set Crit of nonflat critical points. Assuming that for each \(c\in\text{Crit}\), either \(|Df^n(f(c))|\to\infty\) (if \(f\) is real) or \(b_n\cdot|Df^n(f(c))|\to\infty\) for some summable sequence \(\{b_n\}\) (if \(f\) is complex; this is equivalent to the summability of \(|Df^n(f(c))|^{-1})\), we show that for every \(x\in J_ f\setminus \bigcup_if^{-i}(\text{Crit})\), there exist \(l(x)\leq\max_cl(c)\) and \(K'(x)>0\) such that \[ |Df^n(x)|^{l(x)}\geq K'(x)\prod_{i=0}^{s-1}D_{n_i-n_{i+1}} (c_{i+1}) \] for infinitely many \(n\). Here \(0=n_s<\dots<n_1<n_0 =n\) are so-called critical times, \(c_i\) is a point in Crit (or a repelling periodic point in the boundary of the immediate basin of a hyperbolic periodic attractor), which shadows \(\text{ orb}(x)\) for \(n_i-n_{i+1}\) iterates, and \[ D_k (c_i ) =\begin{cases} \max(\lambda,K\cdot|Df^k(f(c_i))|)&\text{if \(f\) is real},\\ \max(\lambda,K\cdot b_k\cdot|Df^k(f(c_i))|)&\text{if \(f\) is complex},\end{cases} \] for uniform constants \(K>0\) and \(\lambda>1\). If all \(c\in\text{Crit}\) have the same critical order, then \(K'(x)\) is uniformly bounded away from 0. Several corollaries are derived. In the complex case, either \(J_f=\widehat{\mathbb C}\) or \(J_f\) has zero Lebesgue measure. Also (assuming all critical points have the same order) there exist \(\kappa>0\) such that if \(n\) is the smallest integer such that \(x\) enters a certain critical neighbourhood, then \(|Df^n(x)|\geq\kappa\).

MSC:

37E05 Dynamical systems involving maps of the interval
37D99 Dynamical systems with hyperbolic behavior
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
39B12 Iteration theory, iterative and composite equations
Full Text: DOI

References:

[1] Blokh, A.; Lyubich, M., Attractors and transformations of an interval, Banach Center Publications, 23, 427-442 (1986) · Zbl 0698.58037
[2] Blokh, A.; Lyubich, M., On the decomposition of one-dimensional attractors of unimodal maps of the interval, Algebra and Analysis (Leningrad Mathematical Journal), 1, 128-145 (1989)
[3] Bruin, H.; Hawkins, J., Exactness and maximal automorphic factors of unimodal maps, Ergodic Theory and Dynamical Systems, 21, 1009-1034 (2001) · Zbl 1055.37040 · doi:10.1017/S0143385701001481
[4] H. Bruin, S. Luzzatto and S. van Strien,Decay of correlations in one-dimensional dynamics, Annales Scientifiques de l’École Normale Supérieure, to appear. · Zbl 1039.37021
[5] H. Bruin and S. van Strien,Existence of acips for multimodal maps, inGlobal Analysis of Dynamical Systems, Festschrift to Floris Takens for his 60’th birthday, 2001, to appear.
[6] Carleson, L.; Gamelin, W., Complex Dynamics (1995), Berlin: Springer, Berlin
[7] Collet, P.; Eckmann, J.-P., Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory and Dynamical Systems, 3, 13-46 (1983) · Zbl 0532.28014
[8] Graczyk, J.; Smirnov, S., Collet, Eckmann & Hölder, Inventiones Mathematicae, 133, 69-96 (1998) · Zbl 0916.30023 · doi:10.1007/s002220050239
[9] J. Graczyk and S. Smirnov,Non-uniform hyperbolicity in complex dynamics I, II, Preprint (2001). · Zbl 1163.37008
[10] J. Graczyk and S. Smirnov,Non-uniform hyperbolicity in complex dynamics. I Poincaré series and induced hyperbolicity, Manuscript (2000).
[11] M. Lyubich,Ergodic theory for smooth one-dimensional dynamical systems, Preprint, Stony Brook11 (1990).
[12] Mañé, R., Hyperbolicity, sinks and measure in one dimensional dynamics, Communications in Mathematical Physics, 100, 495-524 (1985) · Zbl 0583.58016 · doi:10.1007/BF01217727
[13] Mañé, R., On a theorem of Fatou, Boletim da Sociedade Brasileira de Matemática (N.S.), 24, 1-11 (1993) · Zbl 0781.30023 · doi:10.1007/BF01231694
[14] de Melo, W.; van Strien, S., One-dimensional Dynamics (1993), Berlin: Springer, Berlin · Zbl 0791.58003
[15] Misiurewicz, M., Absolutely continuous measures for certain maps of an interval, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 53, 17-51 (1981) · Zbl 0477.58020 · doi:10.1007/BF02698686
[16] Nowicki, T., Symmetric S-unimodal mappings and positive Liapunov exponents, Ergodic Theory and Dynamical Systems, 5, 611-616 (1985) · Zbl 0615.28009 · doi:10.1017/S0143385700003199
[17] Nowicki, T.; Sands, D., Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Inventiones Mathematicae, 132, 633-680 (1998) · Zbl 0908.58016 · doi:10.1007/s002220050236
[18] Nowicki, T.; van Strien, S., Invariant measures under a summability condition for unimodal maps, Inventiones Mathematicae, 105, 123-136 (1991) · Zbl 0736.58030 · doi:10.1007/BF01232258
[19] Pommerenke, Chr., Boundary behaviour of conformal maps (1992), Berlin: Springer-Verlag, Berlin · Zbl 0762.30001
[20] Prado, E., Ergodicity of conformal measures for unimodal polynomials, Conformal Geometry and Dynamics, 2, 29-44 (1998) · Zbl 0893.58046 · doi:10.1090/S1088-4173-98-00019-8
[21] Przytycki, F., Iteration of holomorphic Collet-Eckmann maps: conformal and invariant measures, Transactions of the American Mathematical Society, 350, 717-742 (1998) · Zbl 0892.58063 · doi:10.1090/S0002-9947-98-01890-X
[22] Przytycki, F.; Rivera-Letelier, J.; Smirnov, S., Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Inventiones Mathematicae, 151, 29-63 (2003) · Zbl 1038.37035 · doi:10.1007/s00222-002-0243-x
[23] Przytycki, F.; Rohde, S., Rigidity of holomorphic Collet-Eckmann repellers, Arkiv för Matematik, 37, 357-371 (1999) · Zbl 1034.37026 · doi:10.1007/BF02412220
[24] J. Rivera-Letelier,Rational maps with decay of geometry: Rigidity, Thurston’s algorithm and local connectivity, Preprint, Stony Brook9 (2000).
[25] van Strien, S., Transitive maps which are not ergodic with respect to Lebesgue measure, Ergodic Theory and Dynamical Systems, 16, 833-848 (1996) · Zbl 0858.58032
[26] Sullivan, D., Conformal dynamical systems, 725-752 (1983), Berlin: Springer, Berlin · Zbl 0524.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.