×

A posteriori error analysis for locally conservative mixed methods. (English) Zbl 1121.65112

This paper improves and extends the theoretical analysis for a residual-type error estimator for locally conservative mixed methods developed by D. Braess and R. Verfürth [SIAM J. Numer. Anal. 33, No. 6, 2431–2444 (1996; Zbl 0866.65071)] for the Raviart-Thomas mixed finite element method working in mesh-dependent norms. These new results cover any locally conservative mixed method under minimal assumptions. In particular, they avoid the saturation assumption made by Braess and Verfürth [loc. cit.] and they also take into account discontinuous coefficients with possibly large jumps across interelement boundaries. These mathematical results are completed by convincing numerical experiments.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 0866.65071
Full Text: DOI

References:

[1] Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. · Zbl 1008.65076
[2] A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385 – 395. · Zbl 0866.65068 · doi:10.1007/s002110050222
[3] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742 – 760. · Zbl 0482.65060 · doi:10.1137/0719052
[4] Peter Bastian and Béatrice Rivière, Superconvergence and \?(\?\?\?) projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids 42 (2003), no. 10, 1043 – 1057. · Zbl 1030.76026 · doi:10.1002/fld.562
[5] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579 – 608 (English, with English and French summaries). · Zbl 0962.65096 · doi:10.1007/PL00005393
[6] Dietrich Braess, Ottmar Klaas, Rainer Niekamp, Erwin Stein, and Frank Wobschal, Error indicators for mixed finite elements in 2-dimensional linear elasticity, Comput. Methods Appl. Mech. Engrg. 127 (1995), no. 1-4, 345 – 356. · Zbl 0860.73064 · doi:10.1016/0045-7825(95)00841-3
[7] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431 – 2444. · Zbl 0866.65071 · doi:10.1137/S0036142994264079
[8] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[9] Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465 – 476. · Zbl 0864.65068
[10] Z. Cai, J. E. Jones, S. F. McCormick, and T. F. Russell, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997), no. 3-4, 289 – 315 (1998). · Zbl 0941.76050 · doi:10.1023/A:1011577530905
[11] Zhiming Chen and Shibin Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), no. 2, 443 – 462. · Zbl 1032.65119 · doi:10.1137/S1064827501383713
[12] So-Hsiang Chou, Do Y. Kwak, and Kwang Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case, SIAM J. Numer. Anal. 39 (2001), no. 4, 1170 – 1196. · Zbl 1007.65091 · doi:10.1137/S003614290037544X
[13] So-Hsiang Chou, Do Y. Kwak, and Kwang Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp. 72 (2003), no. 242, 525 – 539. · Zbl 1015.65068
[14] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[15] Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374 – 2399. · Zbl 1058.65120 · doi:10.1137/S0036142902405217
[16] K. Y. Kim, New mixed finite volume methods for second order elliptic problems, to appear in ESAIM: M2AN. · Zbl 1097.65116
[17] Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902 – 931. · Zbl 1010.65045 · doi:10.1137/S003614290037174X
[18] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 523 – 639. · Zbl 0875.65090
[19] Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151 – 167 (English, with French summary). · Zbl 0717.65081
[20] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, 1996. · Zbl 0853.65108
[21] Barbara I. Wohlmuth, A residual based error estimator for mortar finite element discretizations, Numer. Math. 84 (1999), no. 1, 143 – 171. · Zbl 0962.65090 · doi:10.1007/s002110050467
[22] Barbara I. Wohlmuth and Ronald H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), no. 228, 1347 – 1378. · Zbl 0929.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.