×

Timescales of population rarity and commonness in random environments. (English) Zbl 1120.92044

Summary: This is a mathematical study of the interactions between nonlinear feedback (density dependence) and uncorrelated random noise in the dynamics of unstructured populations. The stochastic nonlinear dynamics are generally complex, even when the deterministic skeleton possesses a stable equilibrium. There are three critical factors of the stochastic nonlinear dynamics; whether the intrinsic population growth rate \((\lambda)\) is smaller than, equal to, or greater than 1; the pattern of density dependence at very low and very high densities; and whether the noise distribution has exponential moments or not. If \(\lambda<1\), the population process is generally transient with escape towards extinction. When \(\lambda\geq 1\), our quantitative analysis of the stochastic nonlinear dynamics focuses on characterizing the time spent by the population at very low density (rarity), or at high abundance (commonness), or in extreme states (rarity or commonness). When \(\lambda>1\) and density dependence is strong at high density, the population process is recurrent: any range of density is reached (almost surely) in finite time. The law of time to escape from extremes has a heavy, polynomial tail that we compute precisely, which contrasts with the thin tail of the laws of rarity and commonness. Thus, even when \(\lambda\) is close to one, the population will persistently experience wide fluctuations between states of rarity and commonness. When \(\lambda=1\) and density dependence is weak at low density, rarity follows a universal power law with exponent \(-3/2\). We provide some mathematical support for the numerical conjecture [R. Ferriere and B. Cazelles, Ecology 80, 1505–1521 (1999)] that the power law generally approximates the law of rarity of ‘weakly invading’ species with \(\lambda\) values close to one. Some preliminary results for the dynamics of multispecific systems are presented.

MSC:

92D40 Ecology
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Aspandiiarov, S.; Iasnogorodski, R.; Menshikov, M., Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant, Ann. Probab., 24, 932-960 (1996) · Zbl 0869.60036
[2] Athreya, K. B.; Dai, J., Random logistic maps. i, J. Theor. Probab., 13, 595-608 (2000) · Zbl 0969.60069
[3] Brown, J. H., Complex species interactions and the dynamics of ecological systems: long-term experiments, Science, 283, 643-650 (2001)
[4] Chesson, P.L., 1991. Stochastic population models. In: Kolasa, J., Pickett, S.T.A. (Eds.), Ecological Heterogeneity, Springer, Berlin.; Chesson, P.L., 1991. Stochastic population models. In: Kolasa, J., Pickett, S.T.A. (Eds.), Ecological Heterogeneity, Springer, Berlin.
[5] Coulson, T.; Rohani, P.; Pascual, M., Skeletons, noise and population growth: the end of an old debate?, Trends Ecol. Evol., 19, 359-364 (2004)
[6] Cushing, J.M., 1998. An introduction to structured population dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71. Society of Industrial and Applied Mathematics, Philadelphia, PA.; Cushing, J.M., 1998. An introduction to structured population dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71. Society of Industrial and Applied Mathematics, Philadelphia, PA. · Zbl 0939.92026
[7] Durrett, R.; Levin, S., The importance of being discrete and spatial, Theor. Popul. Biol., 46, 363-394 (1994) · Zbl 0846.92027
[8] Ellner, S., Asymptotic behavior of some stochastic difference equation population models, J. Math. Biol., 19, 169-200 (1984)
[9] Fagerholm, H.; Högnäs, G., Stability classification of a Ricker model with two random parameters, Adv. Appl. Probab., 34, 112-127 (2002) · Zbl 0995.92037
[10] Ferriere, R.; Cazelles, B., Universal power laws govern intermittent rarity in communities of interacting species, Ecology, 80, 1505-1521 (1999)
[11] Finkenstädt, B. F.; Grenfell, B. T., Time series modelling of childhood diseases: a dynamical systems approach, J. R. Stat. Soc. Ser. C, 49, 187-205 (2000) · Zbl 0944.62100
[12] Grenfell, B. T., Noise and determinism in synchronized sheep dynamics, Nature, 394, 674-677 (2000)
[13] Gyllenberg, M.; Silvestrov, D., Quasi-stationary distributions of a stochastic metapopulation model, J. Math. Biol., 33 (1994) · Zbl 0816.92016
[14] Gyllenberg, M., Högnäs, G., Koski T., 1994a. Null recurrence in a stochastic Ricker model. In: Analysis, Algebra, and Computers in Mathematical Research, Lule å, 1992, Lecture Notes in Pure and Applied Mathematics, vol. 156, pp. 147-164. Dekker, New York.; Gyllenberg, M., Högnäs, G., Koski T., 1994a. Null recurrence in a stochastic Ricker model. In: Analysis, Algebra, and Computers in Mathematical Research, Lule å, 1992, Lecture Notes in Pure and Applied Mathematics, vol. 156, pp. 147-164. Dekker, New York. · Zbl 0802.60059
[15] Gyllenberg, M.; Högnäs, G.; Koski, T., Population models with environmental stochasticity, J. Math. Biol., 32, 93-108 (1994) · Zbl 0799.92021
[16] Hastings, A., Transients: the key to long-term ecological understanding?, Ecol. Evol., 19, 39-45 (2004)
[17] Heagy, J. F.; Platt, N.; Hammel, S. M., Characterization of on-off intermittency, Phys. Rev. E, 49, 1140-1150 (1994)
[18] Higgins, K., Stochastic dynamics and deterministic skeletons: population behavior of dungeness crab, Science, 402, 1431-1435 (1997) · Zbl 1225.60113
[19] Hochberg, M.E., Hawkins B.A., 1992. Refuges as a predictor of parasitoid diversity. Science 255, 973-976.; Hochberg, M.E., Hawkins B.A., 1992. Refuges as a predictor of parasitoid diversity. Science 255, 973-976.
[20] Hofbauer, J.; Hutson, V.; Jansen, H., Coexistence for systems governed by difference equation of Lotka-Volterra type, J. Math. Biol., 25, 553-570 (1987) · Zbl 0638.92019
[21] Hognas, G., 1997. On the quasi-stationary distribution of a stochastic Ricker model. Stoch. Proc. Appl. 70, 243-263.; Hognas, G., 1997. On the quasi-stationary distribution of a stochastic Ricker model. Stoch. Proc. Appl. 70, 243-263. · Zbl 0915.60072
[22] Huisman, J.; Weissing, F. J., Biodiversity of plankton by species oscillations and chaos, Nature, 402, 407-410 (1999)
[23] Huisman, J.; Weissing, F. J., Biological conditions for oscillations and chaos generated by multispecies competition, Ecology, 82, 2682-2695 (2001)
[24] Kaitala, V.; Ylikarjula, J.; Ranta, E.; Lundberg, P., Population dynamics and the colour of environmental noise, Proc. R. Soc. London B, 264, 943-948 (1997)
[25] Kifer, Y., Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., 321, 505-524 (1990) · Zbl 0714.60019
[26] Kifer, Y., 1991. Random perturbations of dynamical systems: a new approach. In: Mathematics of Random Media, Blacksburg, VA, 1989, Lectures in Applied Mathematics, vol. 27, pp. 163-173. American Mathematical Society, Providence, RI.; Kifer, Y., 1991. Random perturbations of dynamical systems: a new approach. In: Mathematics of Random Media, Blacksburg, VA, 1989, Lectures in Applied Mathematics, vol. 27, pp. 163-173. American Mathematical Society, Providence, RI. · Zbl 0743.58035
[27] Kornadt, O.; Linz, S. J.; Lucke, M., Ricker model: influence of periodic and stochastic parametric modulation, Phys. Rev. A, 44, 940-955 (1991)
[28] Lamperti, J., Criteria for stochastic processes. II. Passage-time moments, J. Math. Anal. Appl., 7, 127-145 (1963) · Zbl 0202.46701
[29] Leirs, H., et al., 1997. Stochastic seasonality and nonlinear density dependent factors regulate population size in an African rodent. Nature 389, 176-180.; Leirs, H., et al., 1997. Stochastic seasonality and nonlinear density dependent factors regulate population size in an African rodent. Nature 389, 176-180.
[30] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088
[31] Morrow, G. J.; Sawyer, S., Large deviation results for a class of Markov chains arising from population genetics, Ann. Probab., 17, 1124-1146 (1989) · Zbl 0684.60018
[32] Nisbet, R. M.; Gurney, W. S.C., Modelling Fluctuating Dynamics (1982), Wiley: Wiley New York · Zbl 0593.92013
[33] Ramanan, K.; Zeitouni, O., The quasi-stationary distribution for small random perturbations of certain one-dimensional maps, Stoc. Proc. Appl., 84, 25-51 (1999) · Zbl 0997.60074
[34] Rand, D. A.; Wilson, H. B., Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics, Proc. R. Soc. London B, 179, 179-184 (1991)
[35] Revuz, D., Yor, M., 1999. Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd ed., vol. 293. Springer, Berlin.; Revuz, D., Yor, M., 1999. Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd ed., vol. 293. Springer, Berlin. · Zbl 0917.60006
[36] Ripa, J.; Lundberg, P., The route to extinction in variable environments, Oikos, 90, 89-96 (2000)
[37] Royama, T., Analytical Population Dynamics (1992), Chapman & Hall: Chapman & Hall London
[38] Schaffer, W. M.; Ellner, S.; Kot, M., Effects of noise on some dynamical models in ecology, J. Math. Biol., 24, 479-523 (1986) · Zbl 0626.92021
[39] Sumpter, D. J.; Broomhead, D. S., Relating individual behavior to population dynamics, Proc. R. Soc. London B, 268, 925-932 (2001)
[40] Sun, P.; Yang, X. B., Dynamic behaviors of the Ricker population model under a set of randomized perturbations, Math. Biosci., 164, 147-159 (2000) · Zbl 0952.92025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.