×

A continuum analysis of the driving force of ferroelectric/ferroelastic domain wall motions. (English) Zbl 1120.74462

Summary: First, Eshelby’s driving force for the motion of a sharp interface is rederived from general thermodynamic principles. Ferroelectric and ferroelastic domain walls represent a special class of such interfaces in mechanically stressed crystals subject also to an electric field. The corresponding bulk contributions to the driving force are caused by variations of the ferroelectric/ferroelastic anisotropy energy, whereas the interface contributions arise from variations of the intrinsic surface energy of the domain wall and domain wall bending. The general expressions for the local driving force per unit area of such domain walls are specialized then to domain walls in piezoelectric crystals.

MSC:

74F15 Electromagnetic effects in solid mechanics
74E15 Crystalline structure
82D45 Statistical mechanics of ferroelectrics
Full Text: DOI

References:

[1] Abeyaratne, R.; Knowles, J. K., On the driving traction acting on a surface of strain discontinuity in a continuum, J. Mech. Phys. Solids, 38, 3, 345-360 (1990) · Zbl 0713.73030
[2] Eshelby, J. D., Energy relations and the energy-momentum tensor in continuum mechanics, (Kanninen, M. F.; Adler, A. R.; Rosenfield, A. R.; Jaffee, R. I., Inelastic Behavior of Solids (1970), McGraw-Hill: McGraw-Hill New York), 77-115
[3] Fatuzzo, E.; Merz, W. J., Ferroelectricity Selected Topics in Solid State Physics, vol. 7 (1967), North-Holland: North-Holland Amsterdam
[4] de Groot, S. R.; Mazur, P., Non-Equilibrium Thermodynamics (1984), Dover: Dover New York · Zbl 1375.82004
[5] Gurtin, M. E.; Weissmüller, J.; Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philos. Mag. A, 78, 5, 1093-1109 (1998)
[6] Hwang, S. C.; McMeeking, R. M., A finite element model of ferroelectric polycrystals, Ferroelectrics, 211, 177 (1998)
[7] Hwang, S. C.; Lynch, C. S.; McMeeking, R. M., Ferroelectric/ferroelastic interactions and a polarization switching model, Acta Metall. Mater., 43, 5, 2073-2084 (1995)
[8] Kessler, H.; Balke, H., On the local and average energy release in polarization switching phenomena, J. Mech. Phys. Solids, 49, 5, 953-978 (2001) · Zbl 0980.74020
[9] Kessler, H., Balke, H., 2005. A continuum analysis of charge induced ferroelectric domain wall motions. J. Mech. Phys. Solids, to be published, doi:10.1016/j.jmps.2005.08.005; Kessler, H., Balke, H., 2005. A continuum analysis of charge induced ferroelectric domain wall motions. J. Mech. Phys. Solids, to be published, doi:10.1016/j.jmps.2005.08.005 · Zbl 1120.74461
[10] Loge, R. E.; Suo, Z., Nonequilibrium thermodynamics of ferroelectric domain evolution, Acta Mater., 44, 8, 3429-3438 (1996)
[11] McMeeking, R. M.; Landis, C. M., Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech., 72, 581-590 (2005) · Zbl 1111.74551
[12] Mueller, R., Gross, D., Lupascu, D.C., 2005. Driving forces on domain walls in ferroelectric materials and interaction with defects. Comp. Mat. Sci., to be published, doi:10.1016/j.commatsci.2005.02.014; Mueller, R., Gross, D., Lupascu, D.C., 2005. Driving forces on domain walls in ferroelectric materials and interaction with defects. Comp. Mat. Sci., to be published, doi:10.1016/j.commatsci.2005.02.014
[13] Prigogine, I., Introduction to Thermodynamics of Irreversible Processes (1967), Wiley: Wiley New York · Zbl 0115.23101
[14] Salje, E. K.H., Phase transitions in ferroelastic and co-elastic crystals. Cambridge Topics in Mineral Physics & Chemistry (1993), Cambridge University Press: Cambridge University Press Cambridge
[15] Salje, E. K.H.; Ishibashi, Y., Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains, J. Phys.: Condens. Matter, 8, 8477-8495 (1996)
[16] Strukov, B. A.; Levanyuk, A. P., Ferroelectric Phenomena in Crystals: Physical Foundations (1998), Springer: Springer Berlin · Zbl 0899.00012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.