×

On the resonances of the Laplacian on waveguides. (English) Zbl 1119.78317

Summary: The resonances for the Dirichlet and Neumann Laplacian are studied on compactly perturbed waveguides. In the absence of resonances, an upper bound is proven for the localised resolvent. This is then used to prove that the existence of a quasimode whose asymptotics is bounded away from the thresholds implies the existence of resonances converging to the real axis. An upper bound to the number of resonances is also proven.

MSC:

78A50 Antennas, waveguides in optics and electromagnetic theory
35P20 Asymptotic distributions of eigenvalues in context of PDEs
47F05 General theory of partial differential operators

References:

[1] Aslanyan, A.; Parnovski, L.; Vassiliev, D. G., Resonances in acoustic waveguides, Quart. J. Mech. Appl. Math., 53, 3, 429-447 (2000) · Zbl 0972.76091
[2] Babich, V. M.; Buldyrev, V. S., Short-Wavelength Diffraction Theory. Asymptotic Methods. Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer Series on Wave Phenomena, 4 (1991), Springer-Verlag: Springer-Verlag Berlin, translated from the 1972 Russian original by E.F. Kuester · Zbl 0742.35002
[3] Buldyrev, B. S., The asymptotic behaviour of the solutions of the wave equation concentrated near the axis of a two dimensional waveguide in an inhomogeneous medium, (Birman, M. Sh., Topics in Mathematical Physics, Vol. 3: Spectral Theory (1969), Consultants Bureau: Consultants Bureau New York), translated from Russian · Zbl 0195.11402
[4] Cartwright, M. L., Integral Functions (1962), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0075.05901
[5] T. Christiansen, Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends, preprint (2001); T. Christiansen, Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends, preprint (2001)
[6] Christiansen, T.; Zworski, M., Spectral asymptotics for manifolds with cylindrical ends, Ann. Inst. Fourier (1), 45, 251-267 (1992) · Zbl 0818.58046
[7] Donnelly, H., Eigenvalue estimates for certain non-compact manifolds, Michigan Math. J., 31, 349-357 (1984) · Zbl 0591.58033
[8] Edward, J., Eigenfunction decay and accumulation for the Laplacian on asymptotically perturbed waveguides, J. London Math. Soc. (2), 59, 620-636 (1999) · Zbl 0922.35111
[9] Evans, D. V.; Levitin, M. R.; Vassiliev, D. G., Existence theorems for trapped modes, J. Fluid Mech., 261, 21-31 (1994) · Zbl 0804.76075
[10] Gohberg, I.; Krein, M., Introduction to the Theory of Linear Nonselfadjoint Operators. Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs (1969), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0181.13504
[11] Levin, B. J., Distribution of Zeros of Entire Functions. Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, 5 (1980), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0152.06703
[12] R.B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journees “Equations aux Derivees Partielles,” Saint-Jean-de-Monts (1984); R.B. Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journees “Equations aux Derivees Partielles,” Saint-Jean-de-Monts (1984) · Zbl 0621.35073
[13] Melrose, R. B., The Atiyah-Patodi-Singer Index Theorem (1993), A.K. Peters: A.K. Peters Wellesley, MA · Zbl 0796.58050
[14] Parnovski, L., Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends, Internat. J. Math., 6, 911-920 (1995) · Zbl 0842.58074
[15] Petkov, V.; Zworski, M., Breit-Wigner approximation and the distribution of resonances, Comm. Math. Phys., 204, 2, 329-351 (1999) · Zbl 0936.47004
[16] Markus, A. S., Introduction to the Spectral Theory of Polynomial Operator Pencils. Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, 71 (1988), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0678.47005
[17] Morgenrother, K.; Werner, P., On the principles of limiting absorption and limiting amplitude for a class of locally perturbed waveguides. Part 1: Time independent theory, Math. Methods Appl. Sci., 10, 125-144 (1988) · Zbl 0657.35038
[18] Morgenrother, K.; Werner, P., On the principles of limiting absorption and limiting amplitude for a class of locally perturbed waveguides. Part 2: Time dependent theory, Math. Methods Appl. Sci., 11, 1-25 (1989) · Zbl 0684.35062
[19] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, 1-4 (1972), Academic Press: Academic Press New York · Zbl 0242.46001
[20] Shubin, M., Pseudodifferential Operators and Spectral Theory (1987), Springer-Verlag · Zbl 0616.47040
[21] Sjostrand, J., Resonances for bottles and trace formulae, Math. Nachr., 211, 95-149 (2001) · Zbl 0979.35109
[22] Sjostrand, J., A trace formula and review of some estimates for resonances, (Microlocal Analysis and Spectral Theory (Lucca, 1996). Microlocal Analysis and Spectral Theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490 (1997), Kluwer Academic: Kluwer Academic Dordrecht), 377-437 · Zbl 0877.35090
[23] Sjostrand, J.; Zworski, M., Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., 4, 729-769 (1991) · Zbl 0752.35046
[24] Soffer, A.; Weinstein, M., Resonances, radiation damping, and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136, 9-74 (1999) · Zbl 0910.35107
[25] Stefanov, P., Quasimodes and resonances: sharp lower bounds, Duke Math. J., 99, 1, 75-92 (1999) · Zbl 0952.47013
[26] Stefanov, P., Resonances near the real axis imply existence of quasimodes, C. R. Acad. Sci. Paris Sér. I Math., 330, 105-108 (2000) · Zbl 0943.35059
[27] P. Stefanov, Sharp upper bounds on the number of resonances near the real axis for trapped systems, preprint (2001); P. Stefanov, Sharp upper bounds on the number of resonances near the real axis for trapped systems, preprint (2001) · Zbl 1213.35334
[28] Stefanov, P.; Vodev, G., Neumann resonances in linear elasticity for an arbitrary body, Comm. Math. Phys., 176, 645-659 (1996) · Zbl 0851.35032
[29] S. Tang, M. Zworski, From quasimodes to resonances, Math. Res. Lett., to be published; S. Tang, M. Zworski, From quasimodes to resonances, Math. Res. Lett., to be published · Zbl 0913.35101
[30] Vainberg, B., Asymptotic Methods in Equations of Mathematical physics (1989), Gordon and Breach: Gordon and Breach New York · Zbl 0743.35001
[31] Vodev, G., Sharp polynomial bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., 146, 205-216 (1992) · Zbl 0766.35032
[32] Vodev, G., Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J., 74, 1-16 (1994) · Zbl 0813.35075
[33] G. Vodev, Resonances in Euclidean scattering, preprint; G. Vodev, Resonances in Euclidean scattering, preprint · Zbl 1075.35024
[34] Weidenmuller, H., Studies of many-channel scattering, Ann. Physics, 28, 60-115 (1964)
[35] Zworski, M., Sharp polynomial bounds on the number of scattering poles, Duke Math. J., 59, 311-323 (1989) · Zbl 0705.35099
[36] M. Zworski, unpublished (1990); M. Zworski, unpublished (1990)
[37] Zworski, M., Counting the scattering poles, (Ikawa, M., Spectral and Scattering Theory (1993), Marcel Dekker) · Zbl 0823.35139
[38] Zworski, M., Poisson formula for resonances in even dimensions, Asian J. Math., 2, 609-617 (1998) · Zbl 0932.47004
[39] Zworski, M., Resonances in physics and geometry, Notices Amer. Math. Soc., 46, 319-328 (1999) · Zbl 1177.58021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.