×

Axisymmetric solutions to the 3D Euler equations. (English) Zbl 1119.35041

The Cauchy problem to the Euler equations is considered: \[ \begin{aligned} &\frac{\partial v}{\partial t}+(v\cdot\nabla)v+\nabla p=0, \quad \text{div}\,v=0 \quad x\in \mathbb R^3,\quad t\in(0,\infty),\\ &v(x,0)=v_0(x),\quad x\in \mathbb R^3. \end{aligned}\tag{1} \] Here \(v=(v_1,v_2,v_3)\) is the velocity of a fluid, \(p\) is the pressure. If \(v\) does not depend on the angular coordinate \(\theta\) of cylindrical coordinates \((r,\theta,x_3)\) we have axisymmetric velocity. Here \(r=\sqrt{x_1^2+x_2^2}\). The angular component \(v_\theta\) is called the swirl velocity.
Two main results are proved. First: if \(v_0\) is a divergence free, axisymmetric vector without swirl such that \(v_0\in C^s\) \((s>1)\), \(| \text{curl}\,v_0| \leq Cr\) then the problem (1) has a unique global solution \(v\in C([0,\infty);C^s)\). Second: if \(v_0\) is a divergence free, axisymmetric vector without swirl such that \(v_0\in L^2\), \(\text{curl}\,v_0\in L^\infty\), \(\frac{\text{curl}\,v_0}{r(x)}\in L^\infty\) then the problem (1) has a unique global axisymmetric without swirl solution \(v\in C([0,\infty);C_*^1)\).

MSC:

35Q05 Euler-Poisson-Darboux equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
Full Text: DOI

References:

[1] Bahouri, H.; Dehman, B., Remarques sur l’apparition de singularit és dans les écoulements eulériens incompressibles à donnée initiale höldérienne, J. Math. Pures Appl. (9), 73, 4, 335-346 (1994) · Zbl 0833.76011
[2] Beale, J. T.; Kato, T.; Majda, A., Remarks on the breakdown of smooth solutions for the \(3 D\) Euler equations, Comm. Math. Phys., 94, 1, 61-66 (1984) · Zbl 0573.76029
[3] Bergh, J.; Löfström, J., Interpolation Spaces (1976), Springer-Verlag: Springer-Verlag Berlin, New York, Heidelberg · Zbl 0344.46071
[4] Bertozzi, A. L.; Majda, A., (Vorticity and Incompressible Flow. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27 (2002)) · Zbl 0983.76001
[5] Chemin, J.-Y., Perfect Incompressible Fluids (1998), Clarendon Press: Clarendon Press Oxford · Zbl 0927.76002
[6] Chemin, J.-Y., Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel, Invent. Math., 103, 3, 599-629 (1991) · Zbl 0739.76010
[7] Chae, D.; Kim, N., Axisymmetric weak solutions of the \(3 D\) Euler equations for incompressible fluid flows, Nonlinear Anal., 29, 12, 1393-1404 (1997) · Zbl 0911.76081
[8] Chae, D.; Kim, N., On the breakdown of axisymmetric smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 178, 2, 391-398 (1996) · Zbl 0858.76068
[9] Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math., 39, S187-S220 (1986) · Zbl 0595.76021
[10] P. Gérard, Résultats récents sur les fluides parfaits incompressibles bidimensionnels (d’après J.-Y. Chemin et J.-M. Delort), Séminaire Bourbaki, vol. 1991/92; P. Gérard, Résultats récents sur les fluides parfaits incompressibles bidimensionnels (d’après J.-Y. Chemin et J.-M. Delort), Séminaire Bourbaki, vol. 1991/92
[11] Grauer, R.; Sideris, T. C., Numerical computation of \(3 D\) incompressible ideal fluid with swirl, Phys. Rev. Lett., 67, 3511-3514 (1991)
[12] Saint Raymond, X., Remarks on axisymmetric solutions of the incompressible Euler system, Comm. Partial Differential Equations, 19, 321-334 (1994) · Zbl 0795.35063
[13] Serfati, P., Structures holomorphes à faible régularité spatiale en mécanique des fluides, J. Math. Pures Appl., 74, 95-104 (1995) · Zbl 0849.35111
[14] Serfati, P., Solutions \(C^\infty\) en temps, \(n - \lg\) Lipschitz bornées en espace et équation d’Euler, C. R. Acad. Sci. Paris, 320, 555-558 (1995) · Zbl 0835.76012
[15] Triebel, H., Theory of Function Spaces (1983), Birkhäuser · Zbl 0546.46028
[16] Yudovich, V. I., Nonstationary flow of an ideal incompressible liquid, Zh. Vychis. Mat., 3, 1032-1066 (1963) · Zbl 0129.19402
[17] Yudovich, V. I., Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2, 27-38 (1995) · Zbl 0841.35092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.