×

Microsatellite evolution: Markov transition functions for a suite of models. (English) Zbl 1118.92050

Summary: This paper takes from the collection of models considered by J. C. Whittaker et al. [Likelihood-based estimation of microsatellite mutation rates. Genetics 164, 781–787 (2003)] derived from direct observations of microsatellite mutations in parent-child pairs and provides analytical expressions for the probability distributions for the change in number of repeats over any given number of generations. The mathematical framework for this analysis is the theory of Markov processes. We find these expressions using two approaches, approximating by circulant matrices and solving a partial differential equation satisfied by the generating function.
The impact of the differing choice of models is examined using likelihood estimates for the time to the most recent common ancestor. The analysis presented here may play a role in elucidating the connections between these two approaches and shows promise in reconciling differences between estimates for mutation rates based on Whittaker’s approach and methods based on phylogenetic analyses.

MSC:

92D15 Problems related to evolution
62P10 Applications of statistics to biology and medical sciences; meta analysis
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I.A. (Eds.), 1972. Handbook of Mathematical Functions and Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York.; Abramowitz, M., Stegun, I.A. (Eds.), 1972. Handbook of Mathematical Functions and Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York. · Zbl 0543.33001
[2] Breiman, L., Probability (1968), Addison-Wesley: Addison-Wesley New York · Zbl 0174.48801
[3] Calabrese, P. P.; Durrett, R. T., Dinucleotide repeats in the Drosophila and human genomes have complex length-dependent mutation processes, Mol. Biol. Evol., 20, 715-725 (2003)
[4] Calabrese, P. P.; Sainudiin, R., Models of microsatellite evolution, (Nielsen, R., Statistical Methods in Molecular Evolution, Series: Statistics for Biology and Health (2004), Springer: Springer New York)
[5] Calabrese, P. P.; Durrett, R. T.; Aquadro, C. T., Dynamics of microsatellite divergence, Genetics, 159, 839-852 (2001)
[6] Cooper, G.; Burroughs, N. L.; Rand, D. A.; Rubensztein, D. C.; Amos, W., Markov chain Monte Carlo analysis of human Y-chromosome microsatellites provides evidence of biased mutation, Proc. Nat. Acad. Sci. USA, 96, 11916-11921 (1999)
[7] Davies, P. J., Circulant Matrices (1979), Wiley: Wiley New York · Zbl 0418.15017
[8] DeIorio, M.; Griffiths, R. C.; Leblois, R.; Rousset, F., Stepwise mutation likelihood computation by sequential importance sampling in subdivided population models, Theoret. Popul. Biol., 68, 41-53 (2005) · Zbl 1101.62105
[9] DiRenzo, A.; Peterson, A. C.; Garza, J. C.; Valdes, A. M.; Slatkin, M., Mutational processes of simple-sequence repeat loci in human populations, Proc. Nat. Acad. Sci. USA, 91, 3166-3170 (1994)
[10] Eckert, K. A.; Mowery, A.; Hile, S. E., Misalignment-mediated DNA polymerase \({}^\beta\) mutations: comparison of microsatellite and frame-shift error rates using a forward mutation assay, Biochemistry, 41, 33, 10490-10498 (2002)
[11] Ellegren, H., Heterogeneous mutation processes in human microsatellite DNA sequences, Nat. Genet., 24, 400-402 (2000)
[12] Ethier, S. N.; Kurtz, T. G., Markov Processes: Characterization and Convergence (1986), Wiley: Wiley New York · Zbl 0592.60049
[13] Fristendt, B.; Gray, L. F., A Modern Approach to Probability Theory (1997), Birkhäuser: Birkhäuser Boston · Zbl 0869.60001
[14] Fu, Y.; Chakraborty, R., Simultaneous estimation of all the parameters of a step-wise mutation model, Genetics, 150, 487-497 (1998)
[15] Garza, J. C.; Slatkin, M.; Freimer, N. B., Microsatellite allele frequencies in human and chimpanzees, with implications for constraints on allele size, Mol. Biol. Evol., 12, 594-603 (1995)
[16] Goel, A.; Astumian, R. D.; Herschbach, D., Tuning and switching a DNA polymerase motor with mechanical tension, Proc. Nat. Acad. Sci. USA, 100, 9699-9704 (2003)
[17] Goldstein, D. B.; Schlotterer, C., Microsatellites: Evolution and Applications (1999), Oxford University Press: Oxford University Press Oxford
[18] Hill, T. L., Free Energy Transduction and Biochemical Cycle Kinetics (1989), Springer: Springer New York
[19] Kato, T., A Short Introduction to Perturbation Theory of Linear Operators (1982), Springer: Springer New York · Zbl 0493.47008
[20] Kruglyak, S.; Durrett, R. T.; Malcolm, S.; Aquadro, C. F., Equilibrium distribution of microsatellite repeat lengths resulting from a balance between slipping events and point mutations, Proc. Nat. Acad. Sci. USA, 95, 10774-10778 (1998)
[21] Kunkel, T. A., Misalignment-mediated DNA synthesis errors, Biochemistry, 29, 35, 8003-8011 (1990)
[22] Lai, Y.; Sun, F., Sampling distribution for microsatellites amplified by PCR: mean field approximation and its applications to genotyping, J. Theoret. Biol., 228, 185-194 (2004) · Zbl 1439.92144
[23] Moxon, E. R.; Wills, C., DNA microsatellites: agents of evolution?, Sci. Am., 280-281, 94-99 (1999)
[24] Ohta, T.; Kimura, M., The model of mutation appropriate to calculate the number of electrophoretically detectable alleles in a genetic population, Genet. Res., 22, 201-204 (1973)
[25] Sainudiin, R.; Durrett, R. T.; Aquadro, C. F.; Nielsen, R., Microsatellite mutation models: insights from a comparison of humans and chimpanzees, Genetics, 168, 383-395 (2004)
[26] Silby, R. M.; Whittaker, J. C.; Tolbot, M., A maximum-likelihood approach to fitting equilibrium models of microsatellite evolution, Mol. Biol. Evol., 18, 413-417 (2001)
[27] Stephens, M.; Donnelly, P., Inference in molecular population genetics, J. R. Stat. Soc. B, 62, 605-655 (2000) · Zbl 0962.62107
[28] Walsh, J. B., Persistence of tandem arrays: implications for satellite and simple-sequence DNAs, Genetics, 115, 471-478 (1987)
[29] Walsh, J. B., Estimating the time to the most recent common ancestor for the Y chromosome or mitochondrial DNA for a pair of individuals, Genetics, 158, 897-912 (2001)
[30] Watson, G. N., A Treatise on the Theory of Bessel Functions (1944), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0063.08184
[31] Wehrbahn, C. F., The evolution of selectively similar electrophoretically detectable alleles in finite populations, Genetics, 80, 375-394 (1975)
[32] Whittaker, J. C.; Harbord, R. M.; Boxall, N.; Mackay, I.; Dawson, G.; Silby, R. M., Likelihood-based estimation of microsatellite mutation rates, Genetics, 164, 781-787 (2003)
[33] Wilson, I. J.; Balding, D. J., Genealogical inference from microsatellite data, Genetics, 150, 499-510 (1998)
[34] Wilson, I. J.; Weale, M. E.; Balding, D. J., Inference from DNA data: populations histories, evolutionary processes and forensic match probabilities, J. R. Stat. Soc. A, 166, 155-201 (2003)
[35] Zhivotovsky, L. A.; Feldman, M. W.; Grishechkin, S. A., Biased mutations and microsatellite variation, Mol. Biol. Evol., 14, 926-933 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.