×

An immersed boundary method for compressible flows using local grid refinement. (English) Zbl 1118.76043

Summary: This paper combines a state-of-the-art method for solving three-dimensional preconditioned Navier-Stokes equations for compressible flows with an immersed boundary approach, to provide a Cartesian-grid method for computing complex flows over a wide range of Mach number. Moreover, a flexible local grid refinement technique is employed to achieve high resolution near the immersed body and in other high-flow-gradient regions at a fraction of the cost required by a uniformly fine grid. The method is validated versus well-documented steady and unsteady test problems, for a wide range of both Reynolds and Mach numbers. Finally, and most importantly, for the case of laminar compressible steady flow past NACA-0012 airfoil, a thorough mesh-refinement study shows that the method is second-order accurate.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

EUROVAL
Full Text: DOI

References:

[1] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252 (1972) · Zbl 0244.92002
[2] J. Mohd-Yusof, Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries, Technical Report, NASA Ames/Stanford University, CTR Annual Research Briefs, 1997.; J. Mohd-Yusof, Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries, Technical Report, NASA Ames/Stanford University, CTR Annual Research Briefs, 1997.
[3] Fadlun, E. A.; Verzicco, R.; Orlandi, P.; Mohd-Yosuf, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35 (2000) · Zbl 0972.76073
[4] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 331 (2003)
[5] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239 (2005) · Zbl 1117.76049
[6] De Palma, P.; de Tullio, M. D.; Pascazio, G.; Napolitano, M., An immersed boundary method for compressible viscous flows, Comput. Fluids, 35, 693 (2006) · Zbl 1177.76306
[7] Wilcox, D. C., Turbulence Models for CFD (1998), DCW Industries, Inc.
[8] S. Venkateswaran, S. Weiss, C.L. Merkle, Y.H. Choi, Propulsion related flow fields using the preconditioned Navier-Stokes equations, AIAA Paper 92-3437.; S. Venkateswaran, S. Weiss, C.L. Merkle, Y.H. Choi, Propulsion related flow fields using the preconditioned Navier-Stokes equations, AIAA Paper 92-3437.
[9] Merkle, C. L., Preconditioning methods for viscous flow calculations, (Hafez, M.; Oshima, K., Computational Fluid Dynamics Review 1995 (1995), Wiley: Wiley New York), 419-436 · Zbl 0875.76385
[10] S. Venkateswaran, C.L. Merkle, Dual time stepping and preconditioning for unsteady computations, AIAA Paper 95-0078.; S. Venkateswaran, C.L. Merkle, Dual time stepping and preconditioning for unsteady computations, AIAA Paper 95-0078.
[11] D.A. Schwer, Numerical study of unsteadiness in non-reacting and reacting mixing layers, Ph.D. Thesis, Department of Mechanical Engineering, The Pennsylvania State University, 1999.; D.A. Schwer, Numerical study of unsteadiness in non-reacting and reacting mixing layers, Ph.D. Thesis, Department of Mechanical Engineering, The Pennsylvania State University, 1999.
[12] Pulliam, T. H.; Chaussee, D. S., A diagonal form of an implicit factorization algorithm, J. Comput. Phys., 39, 347 (1981) · Zbl 0472.76068
[13] van der Vorst, H., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 361 (1992) · Zbl 0761.65023
[14] O’Rourke, J., Computational Geometry in C (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0912.68201
[15] Durbin, P. A.; Iaccarino, G., Adaptive grid refinement for structured grids, J. Comput. Phys., 128, 110 (2002)
[16] G. Iaccarino, G. Kalitzin, P. Moin, B. Khalighi, Local grid refinement for an immersed boundary RANS solver, Paper AIAA-2004-0586.; G. Iaccarino, G. Kalitzin, P. Moin, B. Khalighi, Local grid refinement for an immersed boundary RANS solver, Paper AIAA-2004-0586.
[17] Berger, M.; Aftosmis, M., Aspects (and aspect ratios) of Cartesian mesh methods, (Bruneau, C.-H., Sixteenth International Conference on Numerical Methods in Fluid Dynamics (1998), Springer: Springer Berlin), 1-12
[18] Ham, F. E.; Lien, F. S.; Strong, A. B., A Cartesian grid method with transient anisotropic adaptation, J. Comput. Phys., 179, 469 (2002) · Zbl 1130.76364
[19] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357 (1981) · Zbl 0474.65066
[20] Coutanceau, M.; Bouard, R., Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., 79, 231 (1977)
[21] Tritton, D. J., Experiments on the flow past a circular cylinder at low Reynolds number, J. Fluid Mech., 6, 547 (1959) · Zbl 0092.19502
[22] Fornberg, B., A numerical study of the steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 819 (1980) · Zbl 0428.76032
[23] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 42, 471 (1970) · Zbl 0193.26202
[24] Linnick, M. N.; Fasel, H. F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204, 157 (2005) · Zbl 1143.76538
[25] Batchelor, G. K., An Introduction to Fluid Mechanics (1967), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0152.44402
[26] Clift, R.; Grace, J. R.; Weber, M., Bubbles, Drops and Particles (1978), Academic Press: Academic Press New York
[27] Wang, A.-B.; Trávnı´ĉek, Z.; Chia, K.-C., On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder, Phys. Fluids, 12, 1401 (2000) · Zbl 1149.76579
[28] Sabanca, M.; Durst, F., Flows past a tiny circular cylinder at high temperature ratios and slight compressible effects on the vortex shedding, Phys. Fluids, 15, 1821 (2003) · Zbl 1186.76452
[29] Sun, Y.; Wang, Y. L.Z. J., Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow, J. Comput. Phys., 215, 41 (2006) · Zbl 1140.76381
[30] Bashkin, V. A.; Vaganov, A. V.; Egorov, I. V.; Ivanov, D. V.; Ignatova, G. A., Comparison of calculated and experimental data on supersonic flow past a circular cylinder, Fluid Dyn., 37, 473 (2002) · Zbl 1161.76321
[31] P.H. Cook, M.A. McDonald, M.C.P. Firmin, Aerofoil 2822-pressure distributions, boundary layer and wake measurements, AGARD AR 138.; P.H. Cook, M.A. McDonald, M.C.P. Firmin, Aerofoil 2822-pressure distributions, boundary layer and wake measurements, AGARD AR 138.
[32] Haase, W.; Bradsma, F.; Elsholz, E.; Leschziner, M.; Schwamborn, D., EUROVAL - an European initiative on validation of CFD codes, Notes Numer. Fluid Mech., 42 (1993) · Zbl 0788.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.