×

A polynomial analogue to the Stern sequence. (English) Zbl 1117.11017

The Stern sequence \(a(n)\) here is defined by \(a(2n)=a(n)\) and \(a(2n+1)=a(n)+a(n+1)\) for \(n\geq1\) with the initial conditions \(a(0)=0\) and \(a(1)=1\). The study of this sequence has a long history, which is briefly reviewed in the introduction. The authors consider a natural extension to the Stern polynomials defined by \(a(2n;x)=a(n;x^2)\) and \(a(2n+1;x)=xa(n;x^2)+a(n+1;x^2)\), which turn out to exhibit several interesting properties. In particular, they are closely connected to Stirling polynomials (of the second kind) and Chebyshev polynomials.

MSC:

11B83 Special sequences and polynomials
11B37 Recurrences
11B75 Other combinatorial number theory
11B50 Sequences (mod \(m\))
Full Text: DOI

References:

[1] Abramowitz M., Handbook of Mathematical Functions (1964) · Zbl 0171.38503
[2] DOI: 10.1007/978-3-662-05412-3 · doi:10.1007/978-3-662-05412-3
[3] Allouche J.-P., Acta Arith 77 pp 77–
[4] DOI: 10.1016/0304-3975(92)90001-V · Zbl 0774.68072 · doi:10.1016/0304-3975(92)90001-V
[5] DOI: 10.1017/CBO9780511546563 · Zbl 1086.11015 · doi:10.1017/CBO9780511546563
[6] Bachmann P., Niedere Zahlentheorie. Erster Teil (1902)
[7] Bicknell-Johnson M., Fibonacci Quart. 41 pp 169–
[8] Brocot A., Revue Chronométrique. Journal des Horlogers, Scientifique et Pratique 3 pp 186–
[9] DOI: 10.2307/2589182 · Zbl 0983.11009 · doi:10.2307/2589182
[10] Carlitz L., Collect. Math. 14 pp 13–
[11] DOI: 10.1090/S0002-9904-1964-11118-6 · Zbl 0123.25505 · doi:10.1090/S0002-9904-1964-11118-6
[12] Carlitz L., Acta Arith. 10 pp 409–
[13] Comtet L., Advanced Combinatorics. The Art of Finite and Infinite Expansions (1974) · Zbl 0283.05001
[14] DOI: 10.1007/978-1-4612-5695-3 · doi:10.1007/978-1-4612-5695-3
[15] DOI: 10.1090/surv/104 · doi:10.1090/surv/104
[16] DOI: 10.1017/S0956796806005880 · Zbl 1103.68444 · doi:10.1017/S0956796806005880
[17] Giuli C., Fibonacci Quart. 17 pp 103–
[18] Graham R. L., Concrete Mathematics (1994)
[19] Hansen E. R., A Table of Series and Products (1975) · Zbl 0438.00001
[20] DOI: 10.1511/2000.29.3334 · doi:10.1511/2000.29.3334
[21] DOI: 10.1016/j.ejc.2004.04.009 · Zbl 1060.05007 · doi:10.1016/j.ejc.2004.04.009
[22] DOI: 10.2307/3647762 · doi:10.2307/3647762
[23] DOI: 10.2307/2299356 · JFM 55.0060.01 · doi:10.2307/2299356
[24] DOI: 10.1215/S0012-7094-69-03608-4 · Zbl 0186.35701 · doi:10.1215/S0012-7094-69-03608-4
[25] DOI: 10.1090/S0025-5718-1982-0658225-3 · doi:10.1090/S0025-5718-1982-0658225-3
[26] de Rham G., Elem. Math. 2 pp 73–
[27] Riordan J., An Introduction to Combinatorial Analysis (1958) · Zbl 0078.00805
[28] Rivlin T. J., Chebyshev Polynomials (1990)
[29] Stern M. A., J. Reine Angew. Math. 55 pp 193–
[30] Sved M., Ars Combin. 21 pp 271–
[31] DOI: 10.1007/BF03028359 · Zbl 0644.05002 · doi:10.1007/BF03028359
[32] Touchard J., Ann. Soc. Sci. Bruxelles 53 pp 21–
[33] Urbiha I., Math. Commun. 6 pp 181–
[34] DOI: 10.1090/S0025-5718-99-01145-X · Zbl 0983.11007 · doi:10.1090/S0025-5718-99-01145-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.