×

Representable idempotent commutative residuated lattices. (English) Zbl 1117.03070

A commutative residuated lattice is a lattice-ordered commutative monoid with a residuation operation \(\rightarrow\) satisfying \(x \cdot z \leq y\) iff \(z \leq x \rightarrow y\); it is called idempotent if \(x \cdot x = x\), and representable if it embeds into a direct product of linearly ordered commutative residuated lattices. Let RICRL denote the variety of all representable idempotent commutative residuated lattices.
This variety contains all ‘relative Stone algebras’ and all ‘Sugihara monoids’, but is shown to be strictly larger than the varietal join of these two varieties. The main result is that the size of any \(n\)-generated subdirectly irreducible member of RICRL is bounded above by \(3n+1\); consequently, RICRL is a locally finite variety. The structure of subdirectly irreducible members of RICRL is fully described. This description is used to obtain a finite axiomatization of the subvariety of RICRL of all positive Sugihara monoids.
The local finiteness of RICRL implies that every finitely axiomatized subquasivariety of RICRL has a decidable quasi-equational theory. In the context of relevance logic, this result says that every finitely based extension of the positive relevant logic R\(_+\) containing the mingle and Gödel-Dummett axioms has a solvable deducibility problem.

MSC:

03G25 Other algebras related to logic
03B47 Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics)
06F05 Ordered semigroups and monoids
06B20 Varieties of lattices
08B26 Subdirect products and subdirect irreducibility
08C15 Quasivarieties
Full Text: DOI

References:

[1] Paolo Agliano, Ternary deduction terms in residuated structures, Acta Sci. Math. (Szeged) 64 (1998), no. 3-4, 397 – 429. · Zbl 0924.03115
[2] Alan Ross Anderson and Nuel D. Belnap Jr., Entailment, Princeton University Press, Princeton, N. J.-London, 1975. Volume I: The logic of relevance and necessity; With contributions by J. Michael Dunn and Robert K. Meyer, and further contributions by John R. Chidgey, J. Alberto Coffa, Dorothy L. Grover, Bas van Fraassen, Hugues LeBlanc, Storrs McCall, Zane Parks, Garrel Pottinger, Richard Routley, Alasdair Urquhart and Robert G. Wolf. · Zbl 0323.02030
[3] Alan Ross Anderson, Nuel D. Belnap Jr., and J. Michael Dunn, Entailment. The logic of relevance and necessity. Vol. II, Princeton University Press, Princeton, NJ, 1992. With contributions by Kit Fine, Alasdair Urquhart et al; Includes a bibliography of entailment by Robert G. Wolf. · Zbl 0921.03025
[4] Arnon Avron, The semantics and proof theory of linear logic, Theoret. Comput. Sci. 57 (1988), no. 2-3, 161 – 184. · Zbl 0652.03018 · doi:10.1016/0304-3975(88)90037-0
[5] Raymond Balbes and Philip Dwinger, Distributive lattices, University of Missouri Press, Columbia, Mo., 1974. · Zbl 0321.06012
[6] W. J. Blok and W. Dziobiak, On the lattice of quasivarieties of Sugihara algebras, Studia Logica 45 (1986), no. 3, 275 – 280. · Zbl 0616.06003 · doi:10.1007/BF00375898
[7] W. J. Blok and I. M. A. Ferreirim, On the structure of hoops, Algebra Universalis 43 (2000), no. 2-3, 233 – 257. · Zbl 1012.06016 · doi:10.1007/s000120050156
[8] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences. I, Algebra Universalis 15 (1982), no. 2, 195 – 227. · Zbl 0512.08002 · doi:10.1007/BF02483723
[9] W. J. Blok and Don Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 77 (1989), no. 396, vi+78. · Zbl 0664.03042 · doi:10.1090/memo/0396
[10] W. J. Blok and J. G. Raftery, Constructing simple residuated lattices, Algebra Universalis 50 (2003), no. 3-4, 385 – 389. · Zbl 1079.06013 · doi:10.1007/s00012-003-1837-x
[11] W. J. Blok and J. G. Raftery, Fragments of \?-mingle, Studia Logica 78 (2004), no. 1-2, 59 – 106. · Zbl 1067.03029 · doi:10.1007/s11225-005-0106-8
[12] W. J. Blok and C. J. van Alten, The finite embeddability property for residuated lattices, pocrims and BCK-algebras, Algebra Universalis 48 (2002), no. 3, 253 – 271. · Zbl 1058.06016 · doi:10.1007/s000120200000
[13] W. J. Blok and C. J. Van Alten, On the finite embeddability property for residuated ordered groupoids, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4141 – 4157. · Zbl 1083.06013
[14] Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. · Zbl 0478.08001
[15] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467 – 490. · Zbl 0084.00704
[16] Michael Dummett, A propositional calculus with denumerable matrix, J. Symb. Logic 24 (1959), 97 – 106. · Zbl 0089.24307
[17] J. Michael Dunn, Algebraic completeness results for \?-mingle and its extensions, J. Symbolic Logic 35 (1970), 1 – 13. · Zbl 0231.02024 · doi:10.2307/2271149
[18] Kazimiera Dyrda, None of the variety \?_{\?}, \?\ge 2, is locally finite, Demonstratio Math. 20 (1987), no. 1-2, 215 – 219 (1988). · Zbl 0655.06013
[19] N. Galatos, “Varieties of Residuated Lattices”, Ph.D. Thesis, Vanderbilt University, 2003. · Zbl 1082.06011
[20] Nikolaos Galatos, Equational bases for joins of residuated-lattice varieties, Studia Logica 76 (2004), no. 2, 227 – 240. · Zbl 1068.06007 · doi:10.1023/B:STUD.0000032086.42963.7c
[21] Nikolaos Galatos, Minimal varieties of residuated lattices, Algebra Universalis 52 (2004), no. 2-3, 215 – 239. · Zbl 1082.06011 · doi:10.1007/s00012-004-1870-4
[22] Nikolaos Galatos and Hiroakira Ono, Algebraization, parametrized local deduction theorem and interpolation for substructural logics over FL, Studia Logica 83 (2006), no. 1-3, 279 – 308. · Zbl 1105.03021 · doi:10.1007/s11225-006-8305-5
[23] Nikolaos Galatos and James G. Raftery, Adding involution to residuated structures, Studia Logica 77 (2004), no. 2, 181 – 207. · Zbl 1062.03059 · doi:10.1023/B:STUD.0000037126.29193.09
[24] James B. Hart, Lori Rafter, and Constantine Tsinakis, The structure of commutative residuated lattices, Internat. J. Algebra Comput. 12 (2002), no. 4, 509 – 524. · Zbl 1011.06006 · doi:10.1142/S0218196702001048
[25] P. Jipsen and C. Tsinakis, A survey of residuated lattices, Ordered algebraic structures, Dev. Math., vol. 7, Kluwer Acad. Publ., Dordrecht, 2002, pp. 19 – 56. · Zbl 1070.06005 · doi:10.1007/978-1-4757-3627-4_3
[26] Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110 – 121 (1968). · Zbl 0167.28401 · doi:10.7146/math.scand.a-10850
[27] J. Łoś and R. Suszko, Remarks on sentential logics, Nederl. Akad. Wetensch. Proc. Ser. A 61 = Indag. Math. 20 (1958), 177 – 183. · Zbl 0092.24802
[28] A. I. Mal\(^{\prime}\)cev, Algebraic systems, Springer-Verlag, New York-Heidelberg, 1973. Posthumous edition, edited by D. Smirnov and M. Taĭclin; Translated from the Russian by B. D. Seckler and A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 192.
[29] R.K. Meyer, A characteristic matrix for RM, unpublished manuscript, 1967. Partly subsumed in [2, Sec. 29.3].
[30] Robert K. Meyer, Conservative extension in relevant implication, Studia Logica 31 (1973), 39 – 48 (English, with Polish and Russian summaries). · Zbl 0273.02019 · doi:10.1007/BF02120525
[31] Robert K. Meyer, On conserving positive logics, Notre Dame J. Formal Logic 14 (1973), 224 – 236. · Zbl 0251.02029
[32] Robert K. Meyer and Zane Parks, Independent axioms for the implicational fragment of Sobociński’s three-valued logic, Z. Math. Logik Grundlagen Math. 18 (1972), 291 – 295. · Zbl 0261.02011
[33] Iwao Nishimura, On formulas of one variable in intuitionistic propositional calculus., J. Symbolic Logic 25 (1960), 327 – 331 (1962). · Zbl 0108.00302 · doi:10.2307/2963526
[34] Jeffrey S. Olson, Subdirectly irreducible residuated semilattices and positive universal classes, Studia Logica 83 (2006), no. 1-3, 393 – 406. · Zbl 1101.06009 · doi:10.1007/s11225-006-8310-8
[35] J.S. Olson, J.G. Raftery, Positive Sugihara monoids, Algebra Universalis, to appear. · Zbl 1128.03054
[36] Hiroakira Ono, Proof-theoretic methods in nonclassical logic — an introduction, Theories of types and proofs (Tokyo, 1997) MSJ Mem., vol. 2, Math. Soc. Japan, Tokyo, 1998, pp. 207 – 254. · Zbl 0947.03073
[37] Hiroakira Ono, Substructural logics and residuated lattices — an introduction, Trends in logic, Trends Log. Stud. Log. Libr., vol. 21, Kluwer Acad. Publ., Dordrecht, 2003, pp. 193 – 228. · Zbl 1048.03018 · doi:10.1007/978-94-017-3598-8_8
[38] Ladislav Rieger, A remark on the so-called free closure algebras, Czechoslovak Math. J. 7(82) (1957), 16 – 20 (Russian, with English summary). · Zbl 0089.25602
[39] Peter Schroeder-Heister and Kosta Došen , Substructural logics, Studies in Logic and Computation, vol. 2, The Clarendon Press, Oxford University Press, New York, 1993. Papers from the Seminar on Systems of Natural Languages held at the University of Tübingen, Tübingen, October 7 – 8, 1990; Oxford Science Publications. · Zbl 0811.68056
[40] T. Sugihara, Strict implication free from implicational paradoxes, Memoirs of the Faculty of Liberal Arts, Fukui University, Series I (1955), 55-59.
[41] A. S. Troelstra, Lectures on linear logic, CSLI Lecture Notes, vol. 29, Stanford University, Center for the Study of Language and Information, Stanford, CA, 1992. · Zbl 0942.03535
[42] C. J. van Alten, The finite model property for knotted extensions of propositional linear logic, J. Symbolic Logic 70 (2005), no. 1, 84 – 98. · Zbl 1089.03015 · doi:10.2178/jsl/1107298511
[43] Clint J. van Alten and James G. Raftery, Rule separation and embedding theorems for logics without weakening, Studia Logica 76 (2004), no. 2, 241 – 274. · Zbl 1053.03012 · doi:10.1023/B:STUD.0000032087.02579.e2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.