×

Transient numerical simulation of a thermoelectrical problem in cylindrical induction heating furnaces. (English) Zbl 1115.78010

The paper is devoted to the modeling and numerical solution of thermoelectrical phenomena arising in axisymmetric induction heating systems. The authors introduce a coupled system of PDE in cylindrical coordinates, where the electromagnetic equations are expressed in terms of the magnetic vector potential and the heat transfer equation in terms of the enthalpy. An iterative algorithm for solving the finite element formulation of the problems is proposed. The numerical tests of the method for a one-dimensional problem with known analytic solution show a second order dependence of the \(L^2\) error on the mesh size. Some numerical results for an industrial furnace used in silicon purification are shown.

MSC:

78A55 Technical applications of optics and electromagnetic theory
80A20 Heat and mass transfer, heat flow (MSC2010)
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities, Comput. Math. Appl. 7 (1994) 43–58. · Zbl 0456.65036 · doi:10.1016/0898-1221(81)90006-7
[2] A. Bermúdez, J. Bullón, F. Pena and P. Salgado, A numerical method for transient simulation of metallurgical compound electrodes, Finite Elem. Anal. Des. 39 (2003) 283–299. · Zbl 1213.74283 · doi:10.1016/S0168-874X(02)00069-0
[3] A. Bossavit, Computational Electromagnetism (Academic Press, San Diego, CA, 1998).
[4] C. Chaboudez, S. Clain, R. Glardon, D. Mari, J. Rappaz and M. Swierkosz, Numerical modeling in induction heating for axisymmetric geometries, IEEE Trans. Magn. 33 (1997) 739–745. · doi:10.1109/20.560107
[5] S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two-dimensional geometries, Math. Models Methods Appl. Sci. 3 (1993) 805–822. · Zbl 0801.65120 · doi:10.1142/S0218202593000400
[6] R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques (Masson, Paris, 1988).
[7] Y. Delannoy, C. Alemany, K.-I. Li, P. Proulx and C. Trassy, Plasma-refining process to provide solar-grade silicon, Solar Energy Materials Solar Cells 72 (2002) 69–75. · doi:10.1016/S0927-0248(01)00151-9
[8] L.R. Egan and E.P. Furlani, A computer simulation of an induction heating system, IEEE Trans. Magn. 27(5) (1991) 4343–4354. · doi:10.1109/20.105060
[9] C. Elliot and J.R. Ockendon, Weak and Variational Methods for Free Boundary Problems (Pitman, London, 1985).
[10] C.T.A. Johnk, Engineering Electromagnetic Fields and Waves (Wiley, New York, 1988).
[11] O. Klein and P. Philip, modeling of induction heating with prescribed current, voltage or power, IEEE Trans. Magn. 38(3) (2002) 1519–1523. · doi:10.1109/20.999125
[12] P. Massé, B. Morel and T. Breville, A finite element prediction correction scheme for magneto-thermal coupled problem during curie transition, IEEE Trans. Magn. 21(5) (1985) 1871–1873. · doi:10.1109/TMAG.1985.1064038
[13] T.T. Natarajan and N. El-Kaddah, electromagnetically driven flow in induction stirring systems, IEEE Trans. Magn. 35(3) (1999) 1773–1776. · doi:10.1109/20.767374
[14] L. Pichon and A. Razek, Hybrid finite-element method and boundary-element method using time-stepping for eddy-current calculation in axisymmetric problems, IEE Proceedings 136(4) (1989) 217–222.
[15] L. Pichon and A. Razek, Force calculation in axisymmetric induction devices using a hybrid FEM-BEM technique, IEEE Trans. Magn. 26(2) (1990) 1050–1053. · doi:10.1109/20.106501
[16] R. Rappaz and M. Swierkosz, Mathematical modelling and numerical simulation of induction heating processes, Appl. Math. Comput. Sci. 6(2) (1996) 207–221. · Zbl 0876.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.