×

Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method. (English) Zbl 1115.76379

Summary: Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between \(1.2\times 10^4\) and \(2.2\times 10^4\). An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier-Stokes equations in a cubical domain. The projection-diffusion method [E. Leriche and G. Labrosse [SIAM J. Sci. Comput. 22, No. 4, 1386–1410 (2000; Zbl 0972.35087), E. Leriche et al., J. Sci. Comput. 26, No. 1, 25–43 (2006; Zbl 1141.76047)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence

References:

[1] Azaiez, M.; Bernardi, C.; Grundmann, M., Spectral method applied to porous media equations, East-West J. Numer. Math., 2, 91-105 (1995) · Zbl 0838.76055
[2] Batoul, A.; Khallouf, H.; Labrosse, G., Une méthode de résolution directe (Pseudo-Spectrale) du problème de Stokes 2D/3D instationnaire, Application à la Cavité Entrainée Carrée. C.R. Acad. Sci. Paris., 319, I, 1455-1461 (1994) · Zbl 0816.76062
[3] Bouffanais, R., Deville, M. O., Fischer, P. F., Leriche, E., and Weill, D. (2005). Direct and large eddy simulation of incompressible viscous fluid flow by the spectral element method. J. Sci. Comput. DOI: 10.1007/s10915-005-9039-7. · Zbl 1099.76026
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), New-York: Springer-Verlag, New-York · Zbl 0658.76001
[5] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Method for Incompressible Fluid Flow (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1007.76001
[6] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications (1977), Philadelphia: SIAM-CBMS, Philadelphia · Zbl 0412.65058
[7] Haldenwang, P.; Labrosse, G.; Abboudi, S. A.; Deville, M., Chebyshev 3D spectral and 2D pseudospectral solvers for the helmholtz equation, J. Comput. Phys., 55, 115-128 (1984) · Zbl 0544.65071 · doi:10.1016/0021-9991(84)90018-4
[8] Karniadakis, G. E.M.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 414-443 (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[9] Karniadakis, G. Em.; Sherwin, S. J., Spectral/hp element methods for CFD (1999), New-York: Oxford University Press, New-York · Zbl 0954.76001
[10] Labrosse, G., Compatibility conditions for the Stokes system discretized in 2D cartesian domains, Comput. Meth. Appl. Mech. Eng., 106, 353-365 (1993) · Zbl 0783.76081 · doi:10.1016/0045-7825(93)90094-E
[11] Leriche, E., Direct Numerical Simulation of a Lid-Driven Cavity Flow by a Chebyshev Spectral Method (1999), Lausanne: Ecole Polytechnique Fédérale de Lausanne, Lausanne
[12] Leriche, E.; Gavrilakis, S., Direct numerical simulation of the flow in a lid-driven cubical cavity, Phys. Fluids, 12, 6, 1363-1376 (2000) · Zbl 1149.76452 · doi:10.1063/1.870387
[13] Leriche, E.; Labrosse, G., High-order direct Stokes solvers with or without temporal splitting: Numerical investigations of their comparative properties, SIAM J. Sci. Comput., 22, 4, 1386-1410 (2000) · Zbl 0972.35087 · doi:10.1137/S1064827598349641
[14] Leriche, E., Perchat, E., Labrosse, G., and Deville, M. O. (2005). Numerical evaluation of the accuracy and stability properties of high-order direct Stokes solvers with or without temporal splitting. To appear in J. Sci. Comput. · Zbl 1141.76047
[15] Lynch, R. E.; Rice, J. R.; Thomas, D. H., Direct solution of partial difference equations by tensor product methods, Numerishe Mathematik, 6, 185-199 (1964) · Zbl 0126.12703 · doi:10.1007/BF01386067
[16] Prasad, A. K.; Koseff, J. R., Reynolds number and end-wall effects on a lid-driven cavity flow, Phys. Fluids, 1, 2, 208-218 (1989) · doi:10.1063/1.857491
[17] Schumack, M.; Schultz, W.; Boyd, J., Spectral method solution of the Stokes equations on nonstaggered grids, J. Comput. Phys., 94, 30-58 (1991) · Zbl 0721.76057 · doi:10.1016/0021-9991(91)90136-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.