×

3-D wave simulation in anelastic media using the Kelvin-Voigt constitutive equation. (English) Zbl 1115.74381

Summary: We design a numerical algorithm for wave simulation in anelastic media in the presence of free surface, which can be used to model seismic waves at the Earth’s surface and ultrasonic waves in heterogeneous materials. The stress-strain relation is based on the Kelvin-Voigt mechanical model, which has the advantage of not requiring additional field variables. The model requires two anelastic parameters and twice the spatial derivatives of the lossless case. The high-frequency components of the wave field are more attenuated than the low-frequency components, with the attenuation factors being approximately proportional to the square of the frequency. The modeling simulates 3-D waves by using the Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. We stretch the mesh in the vertical direction to increase the minimum grid spacing and reduce the computational cost. Instabilities of the Chebyshev differential operator due to the implementation of the free-surface boundary conditions are solved with a characteristic approach, where the characteristic variables are evaluated at the source central frequency. The results of the modeling are verified by comparisons to the analytical solutions for Lamb’s problem and propagation in unbounded homogeneous media. Examples illustrating the propagation of Rayleigh and Love waves are presented.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI

References:

[1] Augenbaum, J. M., An adaptive pseudospectral method for discontinuous problems, Appl. Numer. Math., 5, 459-480 (1989) · Zbl 0684.65103
[2] (Ash, E. A.; Paige, E. G.S., Rayleigh-wave Theory and Application (1985), Springer: Springer Berlin)
[3] Bayliss, A.; Class; Matkowsky, B. J., Adaptive approximation of solutions to problems with multiple layers by Chebyshev pseudo-spectral methods, J. Comput. Phys., 116, 160-172 (1995) · Zbl 0822.65074
[4] Bayliss, A.; Jordan, K. E.; LeMesurier, B. J.; Turkel, E., A fourth-order accurate finite difference scheme for the computation of elastic waves, Bull. Seism. Soc. Am., 76, 1115-1132 (1986)
[5] Ben-Menahem, A.; Singh, S. J., Seismic Waves and Sources (1981), Springer: Springer Berlin · Zbl 0484.73089
[6] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover: Dover New York · Zbl 0987.65122
[7] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1987), Springer: Springer Berlin, pp. 7-10 · Zbl 0636.76009
[8] Carcione, J. M., Modeling anelastic singular surface waves in the Earth, Geophysics, 57, 781-792 (1992)
[9] Carcione, J. M., Seismic modeling in viscoelastic media, Geophysics, 58, 110-120 (1993)
[10] Carcione, J. M., Time-dependent boundary conditions for the 2-D linear anisotropic-viscoelastic wave equation, Numer. Meth. Part. Diff. Equations, 10, 771-791 (1994) · Zbl 0808.73015
[11] Carcione, J. M., Constitutive model and wave equation for linear, viscoelastic, anisotropic media, Geophysics, 60, 537-548 (1995)
[12] Carcione, J. M., Wave Fields in Real Media. Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic and Porous Media (2001), Pergamon Press: Pergamon Press Oxford
[13] Carcione, J. M.; Cavallini, F.; Mainardi, F.; Hanyga, A., Time-domain seismic modeling of constant \(Q\)-wave propagation using fractional derivatives, Pure Appl. Geophys., 159, 1719-1736 (2002)
[14] Carcione, J. M.; Kosloff, D.; Behle, A.; Seriani, G., A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media, Geophysics, 57, 1593-1607 (1992)
[15] Carcione, J. M.; Quiroga-Goode, G., Some aspects of the physics and numerical modeling of Biot compressional waves, J. Comput. Acous., 3, 261-280 (1996)
[16] Carcione, J. M.; Wang, J. P., A Chebyshev collocation method for the elastodynamic equation in generalized coordinates, Comput. Fluid Dyn. J., 2, 269-290 (1993)
[17] Emmerich, H.; Korn, M., Incorporation of attenuation into time-domain computations of seismic wave fields, Geophysics, 52, 1252-1264 (1987)
[18] Fagin, S. W., Seismic modeling of geological structures: applications to exploration problems, Geophysical Development Series, vol. 2 (1992), Society of Exploration Geophysicists
[19] Fornberg, B., The pseudospectral method: accurate representation of interfaces in elastic wave calculations, Geophysics, 53, 625-637 (1988)
[20] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0844.65084
[21] Guillard, H.; Malé, J. M.; Peyret, R., Adaptive spectral methods with application to mixing layer computations, J. Comput. Phys., 102, 114-127 (1992) · Zbl 0759.76058
[22] Gurevich, B.; Zyrianov, V. B.; Lopatnikov, S. L., Seismic attenuation in finely layered porous rocks: effects of fluid flow and scattering, Geophysics, 62, 319-324 (1997)
[23] Jain, M. K., Numerical Solutions of Differential Equations (1984), Wiley Eastern Ltd · Zbl 0536.65004
[24] Kosloff, D.; Kessler, D.; Queiroz Filho, A.; Tessmer, E.; Behle, A.; Strahilevitz, Solution of the equation of dynamic elasticity by a Chebyshev spectral method, Geophysics, 55, 734-748 (1990)
[25] Kosloff, D.; Kosloff, R., Absorbing boundaries for wave propagation problems, J. Comput. Phys., 63, 363-376 (1986) · Zbl 0644.65086
[26] Kosloff, D.; Tal-Ezer, H., A modified Chebyshev pseudospectral method with an \(O(N^{−1})\) time step restriction, J. Comput. Phys., 104, 457-469 (1993) · Zbl 0781.65082
[27] Levander, A. R., Finite-difference forward modeling in seismology, (James, D. E., The Encyclopedia of Solid Earth Geophysics (1989), Van Nostrand Reinhold: Van Nostrand Reinhold New York), 410-431
[28] Mooney, H. M., Some numerical solutions for Lamb’s problem, Bull. Seism. Soc. Am., 64, 473-491 (1974)
[29] Pekeris, C., The seismic surface pulse, Proc. Natl. Acad. Sci. USA, 41, 469-475 (1955) · Zbl 0068.41203
[30] Pilant, W. L., Elastic waves in the earth (1979), Elsevier: Elsevier Amsterdam
[31] Priolo, E.; Carcione, J. M.; Seriani, G., Numerical simulation of interface waves by high-order spectral modeling techniques, J. Acous. Soc. Am., 95, 681-693 (1994)
[32] Qaisar, M., Attenuation properties of viscoelastic material, Scattering and attenuation of seismic waves, Part II, (Wu, R.-S.; Aki, K., PAGEOPH, vol. 131 (1989), Birkhäuser: Birkhäuser Basel), 703-713
[33] Renaut, R.; Fröhlich, J., A pseudospectral Chebychev method for the 2D wave equation with domain stretching and absorbing boundary conditions, J. Comput. Phys., 124, 324-336 (1996) · Zbl 0849.65079
[34] Reshef, M.; Kosloff, D.; Loewenthal, D., Elastic wave calculations by the Fourier method, Bull. Seism. Soc. Am., 74, 875-891 (1984)
[35] Reshef, M.; Kosloff, D.; Edwards, M.; Hsiung, C., Three-dimensional elastic modeling by the Fourier method, Geophysics, 53, 1184-1193 (1988)
[36] Schubert, F.; Koehler, B., Three-dimensional time domain modeling of ultrasonic wave propagation in concrete in explicit consideration of aggregates and porosity, J. Comput. Acous., 9, 1543-1560 (2001)
[37] Tessmer, E.; Kosloff, D., 3-D elastic modeling with surface topography by a Chebyshev spectral method, Geophysics, 59, 464-473 (1994)
[38] Xia, J.; Miller, R. D.; Park, C. B., Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64, 691-700 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.