×

On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. (English) Zbl 1115.15004

The authors present explicit expressions, computable from the data, for mixed and componentwise condition numbers for both Moore-Penrose inverse and linear least squares problems. In both cases the data matrices have full column (row) rank.
For a matrix \(A \in \mathbb R^{m \times n}\), \(vec(A) \in \mathbb R^{mn}\), is defined by \(vec(A)=[a_1^T, \ldots, a_n^T]^T\), where \(A=[a_1,\ldots,a_n]\) with \(a_i \in \mathbb R^m\), \(i=1, 2, \ldots, n\). If \(m_+(A)\) and \(c_+(A)\) denote the mixed and componentwise condition numbers of the Moore-Penrose inverse of \(A\), respectively, the authors obtain the following expressions: \[ m_+(A)=\frac{\| | M(A)| vec(| A| )\| _{\infty}} {\| vec(A^+) \| _{\infty}}, \qquad c_+(A)=\left \| \frac{| M(A)| vec(| A| )} {vec(A^+)} \right \| _{\infty}, \] where \(A^+\) is the Moore-Penrose inverse of \(A\), and \[ M(A)=[-(A^{+^T} \otimes A^+)+ ((I_m-AA^+)\otimes(A^TA)^{-1})\Pi], \] with \(\Pi\) the vec-permutation matrix.
On the other hand, the authors obtain explicit expressions for mixed and componentwise condition numbers for linear least squares problems, \(m_{ls}(A,b)\) and \(c_{ls}(A,b)\).
Finally, they also obtain upper bounds for the condition numbers \(m_+(A)\), \(c_+(A)\), \(m_{ls}(A,b)\) and \(c_{ls}(A,b)\).

MSC:

15A12 Conditioning of matrices
15A09 Theory of matrix inversion and generalized inverses
65F35 Numerical computation of matrix norms, conditioning, scaling
65F20 Numerical solutions to overdetermined systems, pseudoinverses
Full Text: DOI

References:

[1] M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math. 55 (1989), no. 6, 667 – 684. · Zbl 0678.65024 · doi:10.1007/BF01389335
[2] Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15, Springer-Verlag, New York, 2003. Theory and applications. · Zbl 1026.15004
[3] Å. Björck, Component-wise perturbation analysis and error bounds for linear least squares solutions, BIT 31 (1991), no. 2, 238 – 244. · Zbl 0732.65043 · doi:10.1007/BF01931284
[4] James W. Demmel and Nicholas J. Higham, Improved error bounds for underdetermined system solvers, SIAM J. Matrix Anal. Appl. 14 (1993), no. 1, 1 – 14. · Zbl 0770.65025 · doi:10.1137/0614001
[5] A. J. Geurts, A contribution to the theory of condition, Numer. Math. 39 (1982), no. 1, 85 – 96. · Zbl 0465.65025 · doi:10.1007/BF01399313
[6] I. Gohberg and I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl. 14 (1993), no. 3, 688 – 704. · Zbl 0780.15004 · doi:10.1137/0614049
[7] Alexander Graham, Kronecker products and matrix calculus: with applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1981. Ellis Horwood Series in Mathematics and its Applications. · Zbl 0497.26005
[8] S. Gratton, On the condition number of linear least squares problems in a weighted Frobenius norm, BIT 36 (1996), no. 3, 523 – 530. International Linear Algebra Year (Toulouse, 1995). · Zbl 0878.65030 · doi:10.1007/BF01731931
[9] J.F. Grcar, Optimal sensitivity analysis of linear least squares, Lawrence Berkeley National Laboratory, Report LBNL-52434, 2003.
[10] Nicholas J. Higham, A survey of componentwise perturbation theory in numerical linear algebra, Mathematics of Computation 1943 – 1993: a half-century of computational mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 49 – 77. · Zbl 0815.65062 · doi:10.1090/psapm/048/1314843
[11] A. N. Malyshev, A unified theory of conditioning for linear least squares and Tikhonov regularization solutions, SIAM J. Matrix Anal. Appl. 24 (2003), no. 4, 1186 – 1196. · Zbl 1036.65044 · doi:10.1137/S0895479801389564
[12] John R. Rice, A theory of condition, SIAM J. Numer. Anal. 3 (1966), 287 – 310. · Zbl 0143.37101 · doi:10.1137/0703023
[13] J. Rohn, New condition numbers for matrices and linear systems, Computing 41 (1989), no. 1-2, 167 – 169 (English, with German summary). · Zbl 0665.65042 · doi:10.1007/BF02238741
[14] Robert D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach. 26 (1979), no. 3, 494 – 526. · Zbl 0435.65035 · doi:10.1145/322139.322148
[15] G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev. 19 (1977), no. 4, 634 – 662. · Zbl 0379.65021 · doi:10.1137/1019104
[16] G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. · Zbl 0706.65013
[17] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.
[18] P.Å. Wedin, Perturbation theory for pseudo-inverses, BIT, 13(1973), pp. 217-232. · Zbl 0263.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.