×

Harmonic analysis on totally disconnected groups and irregularities of point distributions. (English) Zbl 1115.11047

The authors study point distributions which possess the structure of finite abelian groups with respect to certain \(p\)-ary arithmetic operations. Let \(\mathcal{D}_N\) be a distribution of \(N>1\) points in the \(d\)-dimensional unit cube \(U^d\). The local discrepancy \(\mathcal{L}[\mathcal{D}_N;Y]\), \(Y=(y_1,\ldots,y_d)\in U^d,\) is defined by \[ \mathcal{L}[\mathcal{D}_N;Y]=\text{card}\{\mathcal{D}_N\cap B_Y\}-N \text{vol}\;B_Y, \] where \(B_Y=[0,y_1)\times\ldots \times[0,y_d)\subset U^d\) is a rectangular box of volume vol \(B_Y=y_1\ldots y_d\). For \(1\leq q<\infty\) the \(L^q\)-discrepancy is defined by \[ \mathcal{L}_q[\mathcal{D}_N]=\left(\int_{U^q}| \mathcal{L}[\mathcal{D}_N;Y]| ^q\,dY\right)^{1/q}. \] By classical results of K. F. Roth [Mathematika 1, 73–79 (1954; Zbl 0057.28604)] (for \(q\geq 2)\) and by W. M. Schmidt [Number Theory and Algebra; Collect. Pap. dedic. H. B. Mann, A. E. Ross, O. Taussky-Todd, 311–329 (1977; Zbl 0373.10020)] for \(d>1\) point distributions always have intrinsic irregularities which can be expressed by the following general lower bound \[ \mathcal{L}_q[\mathcal{D}_N]\gg(\log N)^{\frac{d-1}{2}}; \] for more details concerning irregularities of distributions see the monographs by J. Beck and W. W. L. Chen [Irregularities of distribution. Cambridge Tracts in Mathematics, 89. (Cambridge) etc.: Cambridge University Press (1987; Zbl 0617.10039)], by M. Drmota and R. F. Tichy [Sequences, discrepancies and applications. Lecture Notes in Mathematics. 1651. Berlin: Springer (1997; Zbl 0877.11043)], or by J. Matousek [Geometric discrepancy. An illustrated guide. Algorithms and Combinatorics. 18. Berlin: Springer (1999; Zbl 0930.11060)]. The lower bound (1) is best possible (apart from the value of the implied constant). For suitable point distributions in dimensions \(d=2\) and \(d=3\) the converse inequality was shown by Davenport (1956), Roth (1979, 1980) and by Frolov (1980). For \(d\geq3\) the “constructions” of these low discrepancy point sets depend on probabilistic arguments.
Recently, W. W. L. Chen and M. M. Skriganov [J. Reine Angew. Math. 545, 67–95 (2002; Zbl 1083.11049)] developed an explicit deterministic construction of point sets in arbitrary dimensions with optimal \(L^2\)-discrepancy. In the present paper the explicit construction problem is solved completely (for even \(q=2t\)) by presenting a suitable point distribution in \(U^d\) satisfying \[ \mathcal{L}_{2t}[\mathcal{D}_N]\ll(\log N)^{\frac{d-1}{2}}. \] The proof depends on \(p\)-adic harmonic analysis and Walsh series expansions.

MSC:

11K38 Irregularities of distribution, discrepancy
43A25 Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
Full Text: DOI

References:

[1] Chen W. W. L., Mathematika 27 pp 153– (1980) · Zbl 0456.10027 · doi:10.1112/S0025579300010044
[2] DOI: 10.1093/qmath/34.3.257 · Zbl 0533.10045 · doi:10.1093/qmath/34.3.257
[3] Chen W. W. L., Math. 545 pp 67– (2002)
[4] Davenport H., Mathematika 3 pp 131– (1956) · Zbl 0073.03402 · doi:10.1112/S0025579300001807
[5] Dougherty S. T., Moscow Math. J. 2 (1) pp 81– (2002)
[6] Faure H., Acta Arith. 41 pp 337– (1982)
[7] DOI: 10.2307/1990619 · Zbl 0036.03604 · doi:10.2307/1990619
[8] Frolov K. K., Dokl. Acad. Nauk SSSR 252 (4) pp 805– (1980)
[9] Hellekalek P., Acta Arith. 67 pp 209– (1994)
[10] DOI: 10.1006/jcom.2001.0606 · Zbl 1098.65002 · doi:10.1006/jcom.2001.0606
[11] Martin W. J., Canadian J. Math. 51 pp 326– (1999) · Zbl 0938.05018 · doi:10.4153/CJM-1999-017-5
[12] DOI: 10.1007/BF01294651 · Zbl 0626.10045 · doi:10.1007/BF01294651
[13] DOI: 10.1112/plms/s2-34.1.241 · Zbl 0005.24806 · doi:10.1112/plms/s2-34.1.241
[14] DOI: 10.1007/s006050200034 · Zbl 1010.11043 · doi:10.1007/s006050200034
[15] Price J. J., Canadian J. Math. 9 pp 413– (1957) · Zbl 0079.09204 · doi:10.4153/CJM-1957-049-x
[16] Rosenbloom M. Yu., Prob. Pered. Inf. 33 (1) pp 55– (1997)
[17] DOI: 10.1112/S0025579300000541 · Zbl 0057.28604 · doi:10.1112/S0025579300000541
[18] Roth K. F., Acta Arith. 35 pp 373– (1979)
[19] Roth K. F., Acta Arith. 37 pp 67– (1980)
[20] Skriganov M. M., Alg. Anal. 6 (3) pp 200– (1994)
[21] Skriganov M. M., Alg. Anal. 13 (2) pp 220– (2001)
[22] Sobol I. M., Fiz. 7 pp 784– (1967)
[23] Spector R., Bull. Soc. Math. France Suppl. Mém. pp 24– (1970)
[24] DOI: 10.1016/S0885-064X(02)00025-0 · Zbl 1031.41016 · doi:10.1016/S0885-064X(02)00025-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.