×

Fourth-order iterative methods free from second derivative. (English) Zbl 1114.65046

Summary: We present a family of new iterative methods with order of convergence four for solving nonlinear equations. Per iteration these methods require one evaluation of the function and two of its first derivative. Analysis of efficiency, in term of function evaluations, shows that this family of methods has great superiority, which is also demonstrated by numerical examples.

MSC:

65H05 Numerical computation of solutions to single equations
Full Text: DOI

References:

[1] Ostrowski, A. M., Solution of Equations in Eucilidean and Banach Space (1973), Academic Press: Academic Press New York · Zbl 0304.65002
[2] Traub, J. F., Iterative Methods for Solution of Equations (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0121.11204
[3] Argyros, I. K., A note on the Halley method in Banach spaces, Appl. Math. Comput., 58, 215-224 (1993) · Zbl 0787.65034
[4] Gutiérrez, J. M.; Hernández, M. A., An acceleration of Newton’s method: super-Halley method, Appl. Math. Comput., 117, 223-239 (2001) · Zbl 1023.65051
[5] Gutiérrez, J. M.; Hernández, M. A., A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc., 55, 113-130 (1997) · Zbl 0893.47043
[6] Amat, S.; Busquier, S.; Gutiérrez, J. M., Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157, 197-205 (2003) · Zbl 1024.65040
[7] Hernández, M. A., Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl., 104, 3, 501-515 (2000) · Zbl 1034.65039
[8] Hernández, M. A., Chebyshev’s approximation algorithms and applications, Comput. Math. Appl., 41, 433-445 (2001) · Zbl 0985.65058
[9] Ezquerro, J. A.; Hernández, M. A., A uniparametric Halley-type iteration with free second derivative, Int. J. Pure Appl. Math., 6, 1, 103-114 (2003) · Zbl 1026.47056
[10] Ezquerro, J. A.; Hernández, M. A., On Halley-type iterations with free second derivative, J. Comput. Appl. Math., 170, 455-459 (2004) · Zbl 1053.65042
[11] Ezquerro, J. A.; Hernández, M. A., Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton’s method, J. Comput. Appl. Math., 96, 1-12 (1998) · Zbl 0945.65060
[12] Ezquerro, J. A.; Hernández, M. A., A modification of the super-Halley method under mild differentiability conditions, J. Comput. Appl. Math., 114, 405-409 (2000) · Zbl 0959.65074
[13] Altman, C., Iterative methods of higher order, Bull. Acad. Poll. Sci. Sér. Sci. Math. Astr. Phys., IX, 62-68 (1961) · Zbl 0108.11801
[14] Frontini, M.; Sormani, E., Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput., 149, 771-782 (2004) · Zbl 1050.65055
[15] Argyros, I. K.; Chen, D.; Qian, Q., The Jarratt method in Banach space setting, J. Comput. Appl. Math., 51, 103-106 (1994) · Zbl 0809.65054
[16] Gautschi, W., Numerical Analysis: an Introduction (1997), Birkhäuser · Zbl 0877.65001
[17] Weerakoon, S.; Fernando, T. G.I., A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett., 13, 87-93 (2000) · Zbl 0973.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.