×

Zeroes of polynomials on \(\ell _{\infty }\). (English) Zbl 1114.46035

Let \(P:E \to \mathbb K = \mathbb C\) be a polynomial with \(P(0) = 0\) where \(E\) is an infinite dimensional complex Banach space. It is known that \(P^{-1}(0)\) contains an infinite dimensional subspace. However it is an open problem if \(P^{-1}(0)\) contains a non-separable subspace if \(E\) is non-separable. The author answers this question here in the affirmative when \(E = \ell_\infty.\) In addition, the author shows that if we consider the real \(\ell_\infty,\) then a polynomial \(P:\ell_\infty \to \mathbb R\) that vanishes on a copy of \(c_0\) necessarily vanishes on a non-separable subspace of \(\ell_\infty.\) One interesting side consequence is that if \(c_0 \subset F \subset \ell_\infty\) is separable, then \(F\) is not the intersection of a countable family of zero sets \(P_j^{-1}(0)\) where each \(P_j:\ell_\infty \to \mathbb K\) is a polynomial. The paper also contains a discussion of so-called maximal subspaces relative to a polynomial: For an \(n\)-homogeneous polynomial \(P:E \to \mathbb K,\) the subspace \(F \subset E\) is said to be maximal relative to \(P\) if \(F \subset P^{-1}(0)\) and no larger subspace is contained in \(P^{-1}(0).\)
Reviewer’s note. For some background information, see the reviewer’s article with C. Boyd, R. A. Ryan and I. Zalduendo [Positivity 7, 285–295 (2003; Zbl 1044.46036)] and T. Banakh, A. Plichko and A. Zagorodnyuk [Colloq. Math. 100, 141–147 (2004; Zbl 1066.46040)].

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46B26 Nonseparable Banach spaces
Full Text: DOI

References:

[1] Aron, R. M.; Boyd, C.; Ryan, R. A.; Zalduendo, I., Zeros of polynomials on Banach spaces: The real story, Positivity, 7, 285-295 (2003) · Zbl 1044.46036
[2] Aron, R. M.; Gonzalo, R.; Zagorodnyuk, A., Zeros of real polynomials, Linear Multilinear Algebra, 48, 107-115 (2000) · Zbl 0972.12002
[3] R.M. Aron, P. Hájek, Zero set of polynomials in several variables, Archiv Math., in press; R.M. Aron, P. Hájek, Zero set of polynomials in several variables, Archiv Math., in press
[4] Aron, R. M.; Rueda, M. P., A problem concerning zero-subspaces of homogeneous polynomials, Linear Topol. Spaces Complex Anal., 3, 20-23 (1997) · Zbl 0918.58007
[5] Banakh, T.; Plichko, A.; Zagorodnyuk, A., Zeros of quadratic functionals on non-separable spaces, Colloq. Math., 100, 141-147 (2004) · Zbl 1066.46040
[6] Carothers, N. L., A Short Course on Banach Space Theory, London Math. Soc. Stud. Texts, vol. 64 (2005), Cambridge Univ. Press · Zbl 1072.46001
[7] Dineen, S., Complex Analysis on Infinite Dimensional Spaces (1999), Springer: Springer Berlin · Zbl 1034.46504
[8] J. Ferrer, On the zero-set of real polynomials in non-separable Banach spaces, preprint; J. Ferrer, On the zero-set of real polynomials in non-separable Banach spaces, preprint · Zbl 1145.47045
[9] Lindenstrauss, J., On complemented subspaces of \(m\), Israel J. Math., 5, 153-156 (1967) · Zbl 0153.44202
[10] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, vol. I (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0362.46013
[11] Plichko, A.; Zagorodnyuk, A., On automatic continuity and three problems of “The Scottish Book” concerning the boundedness of polynomial functionals, J. Math. Anal. Appl., 220, 477-494 (1998) · Zbl 0919.46036
[12] Ryan, R., Introduction to Tensor Products of Banach Spaces, Monogr. Math. (2002), Springer-Verlag · Zbl 1090.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.