×

Generalized Ornstein-Uhlenbeck processes. (English) Zbl 1112.82034

Summary: We solve a physically significant extension of a classic problem in the theory of diffusion, namely the Ornstein-Uhlenbeck process G. E. Uhlenbeck and L. S. Ornstein [Phys. Rev. (2) 36, 823–841 (1930; JFM 56.1277.03)]. Our generalized Ornstein-Uhlenbeck systems include a force which depends upon the position of the particle, as well as upon time. They exhibit anomalous diffusion at short times, and non-Maxwellian velocity distributions in equilibrium. Two approaches are used. Some statistics are obtained from a closed-form expression for the propagator of the Fokker-Planck equation for the case where the particle is initially at rest. In the general case we use spectral decomposition of a Fokker-Planck equation, employing nonlinear creation and annihilation operators to generate the spectrum which consists of two staggered ladders.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60G99 Stochastic processes
60J99 Markov processes
82C70 Transport processes in time-dependent statistical mechanics

Citations:

JFM 56.1277.03

References:

[1] DOI: 10.1103/PhysRev.36.823 · JFM 56.1277.03 · doi:10.1103/PhysRev.36.823
[2] DOI: 10.1103/PhysRevLett.96.030601 · doi:10.1103/PhysRevLett.96.030601
[3] van Kampen N. G., Stochastic Processes in Physics and Chemistry, 2. ed. (1981) · Zbl 0511.60038
[4] DOI: 10.1088/0305-4470/18/9/025 · doi:10.1088/0305-4470/18/9/025
[5] DOI: 10.1103/PhysRevE.68.040101 · doi:10.1103/PhysRevE.68.040101
[6] DOI: 10.1103/PhysRevLett.92.250602 · doi:10.1103/PhysRevLett.92.250602
[7] DOI: 10.1103/PhysRevLett.95.240602 · doi:10.1103/PhysRevLett.95.240602
[8] DOI: 10.1103/PhysRev.141.186 · doi:10.1103/PhysRev.141.186
[9] DOI: 10.1103/PhysRevLett.67.2115 · Zbl 0990.82535 · doi:10.1103/PhysRevLett.67.2115
[10] DOI: 10.1103/PhysRevLett.69.1831 · Zbl 0973.82508 · doi:10.1103/PhysRevLett.69.1831
[11] DOI: 10.1103/PhysRev.75.1169 · Zbl 0032.09604 · doi:10.1103/PhysRev.75.1169
[12] Achatz U., Astron. Astrophys. 250 pp 266– (1991)
[13] DOI: 10.1029/2003JA010325 · doi:10.1029/2003JA010325
[14] DOI: 10.1007/3-540-11192-1_4 · doi:10.1007/3-540-11192-1_4
[15] DOI: 10.1103/RevModPhys.64.961 · doi:10.1103/RevModPhys.64.961
[16] DOI: 10.1103/RevModPhys.73.913 · Zbl 1205.76133 · doi:10.1103/RevModPhys.73.913
[17] DOI: 10.1017/S0022112087000193 · Zbl 0617.76058 · doi:10.1017/S0022112087000193
[18] DOI: 10.1016/S0370-1573(00)00070-3 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[19] Dirac P. A. M., The Principles of Quantum Mechanics (1930) · JFM 56.0745.05
[20] DOI: 10.1103/RevModPhys.23.21 · Zbl 0043.38602 · doi:10.1103/RevModPhys.23.21
[21] Abramowitz M., Handbook of Mathematical Functions, 9. ed. (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.