×

Optimization-based material parameter identification in indentation testing for finite strain elasto-plasticity. (English) Zbl 1112.74019

Summary: The calculation of the derivatives of state variables with respect to material parameters using the direct differentiation method is developed for the case of a finite strain finite element analysis in corotational formulation for material behaviour including hypo-elasticity and nonlinear isotropic and kinematic hardening plasticity. The sensitivity analysis for the case of flexible-to-flexible contact, required in indentation testing, has been included. The derivatives obtained in a rotating-stretching bar problem are compared to results obtained by the finite difference method in order to verify the suitability of the corotational formulation in sensitivity analysis for dealing with rigid body rotations. Material parameter identification using a gradient-based numerical optimization is assessed with respect to stability by using pseudo-experimental indentation curves, obtained from modelling with known material parameters, and superposed with artificial noise. The effect of the load history on parameter identification is investigated.

MSC:

74G75 Inverse problems in equilibrium solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74P10 Optimization of other properties in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] ANSYS INC, ANSYS Theory Reference (2002).
[2] Auricchio, Int. J. Plast. 11 pp 65– (1995)
[3] Badrinarayanan, Comput. Methods Appl. Mech. Eng. 129 pp 319– (1996)
[4] Finite-Elemente-Methoden (Springer Verlag, Berlin Heidelberg, 1990).
[5] Bolzon, Int. J. Solids Struct. 41 pp 2957– (2004)
[6] and , Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge University Press, Cambridge, 1997). · Zbl 0891.73001
[7] Chenot, Eng. Comput. 13 pp 190– (1996)
[8] Chung, Int. J. Numer. Methods Eng. 57 pp 1431– (2003)
[9] Constantinescu, Inverse Probl. Eng. 9 pp 19– (2001)
[10] Fish, Int. J. Numer. Methods Eng. 44 pp 839– (1999)
[11] Fish, Comput. Methods Appl. Mech. Eng. 190 pp 75– (2000)
[12] Forestier, Inverse Probl. Eng. 11 pp 255– (2003)
[13] Fourment, Int. J. Numer. Methods Eng. 39 pp 33– (1996)
[14] Fourmont, Int. J. Numer. Methods Eng. 39 pp 51– (1996)
[15] Ganapathysubramanian, Int. J. Numer. Methods Eng. 55 pp 1391– (2002)
[16] Continuum Mechanics and Theory of Materials (Springer Verlag, Heidelberg, 2000).
[17] Huber, J. Appl. Mech. 68 pp 218– (2001)
[18] Huber, Proc. R. Soc. Lond. A 458 pp 1593– (2002)
[19] Huber, Mech. Mater. 27 pp 241– (1998)
[20] Huber, Trans. ASME, J. Eng. Mater. Technol. 120 pp 143– (1998)
[21] Huber, J. Mech. Phys. Solids 47 pp 1589– (1999)
[22] Huber, J. Mech. Phys. Solids 47 pp 1569– (1999)
[23] Huber, J. Appl. Mech. 68 pp 224– (2001)
[24] Huber, Comput. Methods Appl. Mech. Eng. 191 pp 353– (2001)
[25] Kim, Mech. Struct. Mach. 29 pp 351– (2001)
[26] Kim, Int. J. Numer. Methods Eng. 51 pp 1385– (2001)
[27] Kim, Comput. Struct. 79 pp 1959– (2001)
[28] Kim, Int. J. Numer. Methods Eng. 53 pp 2087– (2002)
[29] Kim, Int. J. Solids Struct. 39 pp 2087– (2002)
[30] Contact Methods in Finite Element Methods, Ph.D. thesis, University of Twente (2002).
[31] Computational Contact and Impact Mechanics (Springer Verlag, Heidelberg, 2002).
[32] and , Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990).
[33] Plasticity Theory (Macmillan Publishing Company, London, 1990). · Zbl 0745.73006
[34] Mahnken, Model. Simul. Mater. Sci. Eng. 2 pp 597– (1994)
[35] Mahnken, Comput. Methods Appl. Mech. Eng. 136 pp 225– (1996)
[36] Meggyes, Period. Polytech. Ser. Mech. Eng. 44(1) pp 105– (2000)
[37] and , Numerical Optimization (Springer Verlag, New York, 1999).
[38] and , Computational Inelasticity (Springer Verlag, New York, 1998).
[39] Srikanth, Comput. Methods Appl. Mech. Eng. 190 pp 1859– (2000)
[40] Stupkiewicz, Int. J. Numer. Methods Eng. 50 pp 739– (2001)
[41] Stupkiewicz, Comput. Methods Appl. Mech. Eng. 191 pp 3555– (2001)
[42] Tay, Comput. Methods Appl. Mech. Eng. 81 pp 183– (1990)
[43] Tay, Comput. Methods Appl. Mech. Eng. 81 pp 209– (1990)
[44] Visual Numerics, IMSL Math/Library Vol. 1 and 2, (1997).
[45] and , KNITRO User’s Manual, Technical Report OTC 2003/5, Northwestern University (2003).
[46] Computational Contact Mechanics (Wiley & Sons, Chichester, 2002).
[47] Zabaras, Int. J. Mech. Sci. 45 pp 325– (2003)
[48] Zavarise, Int. J. Numer. Methods Eng. 38 pp 2929– (1995)
[49] and , The Finite Element Method, Vol. 1 (Butterworth-Heinemann, Oxford, 2000).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.