×

Correlation-adjusted estimation of sensitivity and specificity of two diagnostic tests. (English) Zbl 1111.62341

Summary: Models for multiple-test screening data generally require the assumption that the tests are independent conditional on disease state. This assumption may be unreasonable, especially when the biological basis of the tests is the same. We propose a model that allows for correlation between two diagnostic test results. Since models that incorporate test correlation involve more parameters than can be estimated with the available data, posterior inferences will depend more heavily on prior distributions, even with large sample sizes. If we have reasonably accurate information about one of the two screening tests (perhaps the standard currently used test) or the prevalences of the populations tested, accurate inferences about all the parameters, including the test correlation, are possible. We present a model for evaluating dependent diagnostic tests and analyse real and simulated data sets. Our analysis shows that, when the tests are correlated, a model that assumes conditional independence can perform very poorly. We recommend that, if the tests are only moderately accurate and measure the same biological responses, researchers use the dependence model for their analyses.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62N03 Testing in survival analysis and censored data
Full Text: DOI

References:

[1] DOI: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B · doi:10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
[2] Dempster A. P., J. R. Statist. Soc. 39 pp 1– (1977)
[3] DOI: 10.1111/j.0006-341X.2001.00158.x · Zbl 1209.62275 · doi:10.1111/j.0006-341X.2001.00158.x
[4] Dubey J. P., Am. J. Veter. Res. 56 pp 1030– (1995)
[5] DOI: 10.1016/S0167-5877(00)00117-3 · doi:10.1016/S0167-5877(00)00117-3
[6] DOI: 10.1016/S0167-5877(00)00119-7 · doi:10.1016/S0167-5877(00)00119-7
[7] Gastwirth J. L., Can. J. Statist. 19 pp 135– (1991)
[8] Georgiadis M. P., J. Aquat. Anim. Hlth 10 pp 372– (1998)
[9] DOI: 10.1111/1467-9876.00131 · Zbl 0913.62105 · doi:10.1111/1467-9876.00131
[10] Hanson T., J. Agric. Biol. Environ. Statist. (2003)
[11] Hui S. L., Biometrics 36 pp 167– (1980)
[12] Jarrett O., Veter. Rec. 110 pp 325– (1982) · doi:10.1136/vr.110.14.325
[13] Johnson W. O., J. R. Statist. Soc. 53 pp 427– (1991)
[14] DOI: 10.1093/aje/153.9.921 · doi:10.1093/aje/153.9.921
[15] Joseph L., Am. J. Epidem. 141 pp 263– (1995)
[16] DOI: 10.1002/(SICI)1097-0258(19961030)15:20<2161::AID-SIM359>3.0.CO;2-D · doi:10.1002/(SICI)1097-0258(19961030)15:20<2161::AID-SIM359>3.0.CO;2-D
[17] Meng X. L., J. Am. Statist. Ass. 86 pp 899– (1991)
[18] Qu Y., J. Am. Statist. Ass. 93 pp 920– (1998)
[19] Qu Y., Biometrics 52 pp 797– (1996)
[20] Sinclair M. D., J. Am. Statist. Ass. 91 pp 961– (1996)
[21] Tanner M. A., Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions (1996) · Zbl 0846.62001
[22] DOI: 10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X · doi:10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X
[23] Vacek P. M., Biometrics 41 pp 959– (1985)
[24] Zhou X.-H., Appl. Statist. 47 pp 135– (1998) · Zbl 0904.62130 · doi:10.1111/1467-9876.00102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.