×

Upper and lower bounds for an eigenvalue associated with a positive eigenvector. (English) Zbl 1111.47065

Summary: When an eigenvector of a semibounded operator is positive, we show that a remarkably simple argument allows to obtain upper and lower bounds for its associated eigenvalue. This theorem is a substantial generalization of Barta-type inequalities and can be applied to non-necessarily purely quadratic Hamiltonians. An application for a magnetic Hamiltonian is given and the case of a discrete Schrödinger operator is also discussed. It is shown how this approach leads to some explicit bounds on the ground-state energy of a system made of an arbitrary number of attractive Coulombian particles.

MSC:

47N50 Applications of operator theory in the physical sciences
35P15 Estimates of eigenvalues in context of PDEs
47B25 Linear symmetric and selfadjoint operators (unbounded)
47B80 Random linear operators
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] DOI: 10.1016/0375-9601(77)90774-5 · doi:10.1016/0375-9601(77)90774-5
[2] DOI: 10.1215/S0012-7094-78-04540-4 · Zbl 0399.35029 · doi:10.1215/S0012-7094-78-04540-4
[3] DOI: 10.1088/0305-4470/11/1/009 · doi:10.1088/0305-4470/11/1/009
[4] DOI: 10.1073/pnas.77.6.3120 · Zbl 0435.15009 · doi:10.1073/pnas.77.6.3120
[5] Barta J., C. R. Acad. Sci. 204 (7) pp 472– (1937)
[6] DOI: 10.1016/0550-3213(90)90594-4 · doi:10.1016/0550-3213(90)90594-4
[7] DOI: 10.1088/0305-4470/12/4/007 · doi:10.1088/0305-4470/12/4/007
[8] DOI: 10.1016/0022-1236(82)90094-5 · Zbl 0516.47018 · doi:10.1016/0022-1236(82)90094-5
[9] DOI: 10.1007/s006010050075 · doi:10.1007/s006010050075
[10] DOI: 10.1002/cpa.3160470105 · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[11] DOI: 10.1007/BF01030009 · doi:10.1007/BF01030009
[12] DOI: 10.1063/1.525543 · doi:10.1063/1.525543
[13] DOI: 10.1063/1.525543 · doi:10.1063/1.525543
[14] DOI: 10.1103/PhysRev.71.827.2 · doi:10.1103/PhysRev.71.827.2
[15] DOI: 10.1103/PhysRevA.40.6149 · doi:10.1103/PhysRevA.40.6149
[16] DOI: 10.1063/1.1704928 · doi:10.1063/1.1704928
[17] DOI: 10.1103/PhysRevLett.55.931 · doi:10.1103/PhysRevLett.55.931
[18] DOI: 10.1088/0370-1298/68/10/305 · Zbl 0065.23707 · doi:10.1088/0370-1298/68/10/305
[19] DOI: 10.1088/0370-1298/68/10/304 · Zbl 0065.23708 · doi:10.1088/0370-1298/68/10/304
[20] DOI: 10.1007/s002200050599 · Zbl 1042.81012 · doi:10.1007/s002200050599
[21] DOI: 10.1103/PhysRevB.14.2239 · doi:10.1103/PhysRevB.14.2239
[22] DOI: 10.1063/1.1705209 · Zbl 0948.81665 · doi:10.1063/1.1705209
[23] DOI: 10.1063/1.1664909 · doi:10.1063/1.1664909
[24] DOI: 10.1007/3-540-27056-6_37 · doi:10.1007/3-540-27056-6_37
[25] DOI: 10.1007/978-94-009-8410-3 · doi:10.1007/978-94-009-8410-3
[26] DOI: 10.1016/j.nuclphysa.2005.10.015 · doi:10.1016/j.nuclphysa.2005.10.015
[27] DOI: 10.1088/0305-4470/38/5/006 · Zbl 1062.81047 · doi:10.1088/0305-4470/38/5/006
[28] DOI: 10.1090/S0002-9904-1966-11485-4 · Zbl 0141.09901 · doi:10.1090/S0002-9904-1966-11485-4
[29] Reed M., Methods of modern mathematical physics 4, in: Analysis of Operators (1978) · Zbl 0401.47001
[30] Reed M., Methods of modern mathematical physics 3, in: Scattering theory (1978) · Zbl 0401.47001
[31] DOI: 10.1007/BF03024331 · Zbl 0901.11028 · doi:10.1007/BF03024331
[32] DOI: 10.1016/0375-9601(85)90290-7 · doi:10.1016/0375-9601(85)90290-7
[33] Sigal, I. M. , Lectures on large Coulomb systems, mathematical quantum theory. II. Schödinger operators, CRM Proceedings and Lecture Notes, Vol. 8 (Amer. Math. Soc., Providence, RI, 1995), pp. 73–107. · Zbl 0830.35111
[34] Thirring W., A Course in mathematical physics 3, in: Quantum Mechanics of Atoms and Molecules (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.