×

Symmetric modular Diophantine inequalities. (English) Zbl 1111.20051

Given two integers \(a\) and \(b\) with \(b\neq 0\) we write \(a\bmod b\) to denote the remainder of the division of \(a\) by \(b\). Following the notation used by J. C. Rosales, P. A. García-Sánchez and J. M. Urbano-Blanco [in Pac. J. Math. 218, No. 2, 379-398 (2005; Zbl 1184.20052)], a modular Diophantine inequality is an expression of the form \(ax\bmod b\leq x\). The set \(S(a,b)\) of integer solutions of this inequality is a modular numerical semigroup. If \(S\) is a numerical semigroup, then the greatest integer \(g(S)\notin S\) is called the Frobenius number. \(S\) is called symmetric if \(x\in\mathbb{Z}\setminus S\) implies \(g(S)-x\in S\). The author proves that \(S(a,b)\) is symmetric if and only if \(a=ut\), \(b=ktt'\) for some positive integers \(t,t',u,v,k\) such that \(ut-vt'=1\) and \(k\mid u+v\).

MSC:

20M14 Commutative semigroups
11D75 Diophantine inequalities
20M05 Free semigroups, generators and relations, word problems
11B50 Sequences (mod \(m\))

Citations:

Zbl 1184.20052
Full Text: DOI

References:

[1] Roger Apéry, Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris 222 (1946), 1198 – 1200 (French). · Zbl 0061.35404
[2] Valentina Barucci, David E. Dobbs, and Marco Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. 125 (1997), no. 598, x+78. · Zbl 0868.13003 · doi:10.1090/memo/0598
[3] J. Bertin and P. Carbonne, Semi-groupes d’entiers et application aux branches, J. Algebra 49 (1977), no. 1, 81 – 95 (French). · Zbl 0498.14016 · doi:10.1016/0021-8693(77)90268-X
[4] R. Fröberg, C. Gottlieb, and R. Häggkvist, On numerical semigroups, Semigroup Forum 35 (1987), no. 1, 63 – 83. · Zbl 0614.10046 · doi:10.1007/BF02573091
[5] Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings., Manuscripta Math. 3 (1970), 175 – 193. · Zbl 0211.33801 · doi:10.1007/BF01273309
[6] Ernst Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748 – 751. · Zbl 0197.31401
[7] J. C. Rosales and P. A. García-Sánchez, Finitely generated commutative monoids, Nova Science Publishers, Inc., Commack, NY, 1999. · Zbl 0966.20028
[8] J. C. Rosales, P. A. García-Sánchez and J. M. Urbano-Blanco, Modular Diophantine inequalities and numerical semigroups, Pacific J. Math. 218 (2005), 379-398. · Zbl 1184.20052
[9] J. C. Rosales, P. A. García-Sánchez, J. I. García-García, and J. M. Urbano-Blanco, Proportionally modular Diophantine inequalities, J. Number Theory 103 (2003), no. 2, 281 – 294. · Zbl 1039.20036 · doi:10.1016/j.jnt.2003.06.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.