×

Evolutionary game dynamics in a Wright-Fisher process. (English) Zbl 1110.92028

Summary: Evolutionary game dynamics in finite populations can be described by a frequency dependent, stochastic Wright-Fisher process. We consider a symmetric game between two strategies, \(A\) and \(B\). There are discrete generations. In each generation, individuals produce offspring proportional to their payoff. The next generation is sampled randomly from this pool of offspring. The total population size is constant. The resulting Markov process has two absorbing states corresponding to homogeneous populations of all \(A\) or all \(B\). We quantify frequency dependent selection by comparing the absorption probabilities to the corresponding probabilities under random drift. We derive conditions for selection to favor one strategy or the other by using the concept of total positivity. In the limit of weak selection, we obtain the \(1/3\) law: if \(A\) and \(B\) are strict Nash equilibria then selection favors replacement of \(B\) by \(A\), if the unstable equilibrium occurs at a frequency of \(A\) which is less than \(1/3\).

MSC:

92D15 Problems related to evolution
91A22 Evolutionary games

References:

[1] Antal, T., Scheuring, I.: Fixation of strategies for an evolutionary game in finite populations. Mimeo, Center for Polymer Studies and Department of Physics, Boston University, 2005 · Zbl 1296.92238
[2] Binmore, K.: Game Theory and the Social Contract: Playing Fair. MIT Press, Cambridge, MA, 1993
[3] Binmore, K.: Game Theory and the Social Contract: Just Playing. MIT Press, Cambridge, MA, 1998
[4] Bürger, R.: The Mathematical Theory of Selection, Recombination, and Mutation. Wiley, Chichester, 2000 · Zbl 0959.92018
[5] Corradi, J. Econom. Theory, 94, 163 (2000) · Zbl 1073.91513 · doi:10.1006/jeth.1999.2596
[6] Dostálková, Theoret. Population Biol., 65, 205 (2004) · Zbl 1106.92054 · doi:10.1016/j.tpb.2004.01.001
[7] Ewens, W.J.: Mathematical Population Genetics, I. Theoretical Introduction. Second edition. Springer, New York, 2004 · Zbl 1060.92046
[8] Ficici, S., Pollack, J.: Effects of Finite Populations on Evolutionary Stable Strategies. Proceedings of the 2000 Genetic and Evolutionary Computation Conference, L. Darrell Whitley (ed.), Morgan-Kaufmann (2000)
[9] Fogel, Ecological Modeling, 109, 283 (1998) · doi:10.1016/S0304-3800(98)00068-4
[10] Foster, Theoret. Population Biol., 38, 219 (1990) · Zbl 0703.92015 · doi:10.1016/0040-5809(90)90011-J
[11] Fudenberg, J. Econom. Theory, 57, 420 (1992) · Zbl 0766.92012 · doi:10.1016/0022-0531(92)90044-I
[12] Fudenberg, D., Imhof, L.A., Nowak, M.A., Taylor, C.: Evolutionary game dynamics in finite populations with strong selection and weak mutation. Mimeo, Program for Evolutionary Dynamics, Harvard University, 2004. · Zbl 1112.92044
[13] Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge, MA, 1998 · Zbl 0939.91004
[14] Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge, MA, 1991 · Zbl 1339.91001
[15] Gintis, H.: Game Theory Evolving. Princeton University Press, 2000 · Zbl 1159.91300
[16] Hofbauer, J. Theoret. Biol., 81, 609 (1979) · doi:10.1016/0022-5193(79)90058-4
[17] Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, 1998 · Zbl 0914.90287
[18] Hofbauer, Bull. Amer. Math. Soc., 40, 479 (2003) · Zbl 1049.91025 · doi:10.1090/S0273-0979-03-00988-1
[19] Imhof, L. A., The long-run behavior of the stochastic replicator dynamics, Ann. Appl. Probab., 15, 1019-1045 (2005) · Zbl 1081.60045
[20] Imhof, L.A.: Evolutionary game dynamics under stochastic influences. Jahresber. Deutsch. math.-verein. 107, 197-213 (2005b) · Zbl 1138.91344
[21] Imhof, Proc. Natl. Acad. Sci. USA, 102, 10797 (2005) · doi:10.1073/pnas.0502589102
[22] Kandori, Econometrica, 61, 29 (1993) · Zbl 0776.90095
[23] Karlin, S.: Total Positivity. Stanford University Press, 1968 · Zbl 0219.47030
[24] Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, Second edition. Academic Press, London, 1975 · Zbl 0315.60016
[25] Maynard Smith, J.: Evolution and the Theory of Games, Cambridge University Press, 1982 · Zbl 0526.90102
[26] Moran, P.A.P.: The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford, 1962 · Zbl 0119.35901
[27] Nowak, Nature, 428, 646 (2004) · doi:10.1038/nature02414
[28] Nowak, Science, 303, 793 (2004) · doi:10.1126/science.1093411
[29] Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, MA, 1997 · Zbl 0953.91500
[30] Schaffer, J. Theoret. Biol., 132, 469 (1988)
[31] Schreiber, SIAM J. Appl. Math., 61, 2148 (2001) · Zbl 0993.92026 · doi:10.1137/S0036139999352857
[32] Seneta, E.: Non-negative Matrices and Markov Chains. Second edition. Springer, New York, 1981 · Zbl 0471.60001
[33] Taylor, Bull. Math. Biol., 66, 1621 (2004) · Zbl 1334.92372 · doi:10.1016/j.bulm.2004.03.004
[34] Taylor, Math. Biosciences, 40, 145 (1978) · Zbl 0395.90118 · doi:10.1016/0025-5564(78)90077-9
[35] Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995 · Zbl 0879.90206
[36] Wild, Proc. R. Soc. Lond. B, 271, 2345 (2004) · doi:10.1098/rspb.2004.2862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.