×

Poisson integrators for Volterra lattice equations. (English) Zbl 1110.65115

This paper deals with the solution of Volterra lattice equations. It is shown that the symplectic Euler method preserves the quadratic Poisson structure of the periodic Volterra lattice. Modified equations are derived for the symplectic Euler and second order Lobatto IIIA-B method. Numerical results confirm long-term preservation of the Hamiltonian, Casimirs and the first integrals.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Cronström, C.; Noga, M., Multi-Hamiltonian structure of the Lotka-Volterra and quantum Volterra models, Nuclear Phys. B, 445, 501-515 (1995) · Zbl 1009.92502
[2] Damianou, P. A.; Fernandes, R. L., From the Toda lattice to the Volterra lattice and back, Rep. Math. Phys., 50, 361-378 (2002) · Zbl 1038.37046
[3] Faddeev, L. D.; Takhtajan, L. A., Liouville model on the lattice, (Field Theory, Quantum Gravity and Strings. Field Theory, Quantum Gravity and Strings, Lecture Notes in Phys., vol. 246 (1986)), 166-179 · Zbl 1327.39013
[4] E. Faou, C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics, Comput. Visualization Sci. (2004), submitted for publication; E. Faou, C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics, Comput. Visualization Sci. (2004), submitted for publication
[5] Frank, J.; Huang, W.; Leimkuhler, B., Geometric integrators for classical spin systems, J. Comput. Phys., 133, 160-172 (1997) · Zbl 0878.65110
[6] de Frutos, J.; Sanz-Serna, J. M., Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation, Numer. Math., 75, 421-445 (1997) · Zbl 0876.65068
[7] Göktaş, Ü.; Hereman, W., Computation of conservation laws for non-linear lattices, Physica D, 123, 425-436 (1998) · Zbl 0940.34065
[8] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math., vol. 31 (2002), Springer: Springer Berlin · Zbl 0994.65135
[9] Hairer, E.; Lubich, C.; Wanner, G., Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numer., 12, 399-450 (2003) · Zbl 1046.65110
[10] Kac, M.; van Moerbeke, P., On explicit soluble system of non-linear differential equations related to certain Toda lattices, Adv. Math., 16, 160-169 (1975) · Zbl 0306.34001
[11] Karasözen, B., Poisson integrators, Math. Modelling Comput., 40, 1225-1244 (2004) · Zbl 1074.65145
[12] Kupershmidt, B. A., Infinitely-precise space-time discretizations of the equation \(u_t + u u_x = 0\), (Fokas, A. S.; Gelfand, I. M., Algebraic Aspects of Integrable Systems (1997), Birkhäuser Boston: Birkhäuser Boston Cambridge, MA), 205-216 · Zbl 0861.65075
[13] Marsden, J. E.; Ratiu, T. S., Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Texts in Appl. Math., vol. 17 (1994), Springer: Springer New York · Zbl 0811.70002
[14] McLachlan, R. L.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[15] Mickens, R. E., A nonstandard finite-difference scheme for the Lotka-Volterra system, Appl. Numer. Math., 45, 309-314 (2003) · Zbl 1025.65047
[16] Olver, P. J., Applications of Lie Groups to Differential Equations, Graduate Texts in Math., vol. 107 (1986), Springer: Springer New York · Zbl 0656.58039
[17] Sanz-Serna, J. M., An unconventional symplectic integrator of W. Kahan, Appl. Numer. Math., 16, 245-250 (1994) · Zbl 0815.65090
[18] Suris, Y. B., A note on an integrable discretization of the non-linear Schrödinger equation, Inverse Problems, 13, 1211-1236 (1997)
[19] Suris, Y. B., Integrable discretizations for lattice systems: local equations and their Hamiltonian properties, Rev. Math. Phys., 11, 727-822 (1999) · Zbl 0965.37058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.