×

Locally finite triangulated categories. (English) Zbl 1110.16013

Summary: A \(k\)-linear triangulated category \(\mathcal A\) is called locally finite provided
\(\sum_{X\in\text{ind\,}\mathcal A}\dim_k\operatorname{Hom}_{\mathcal A}(X,Y)<\infty\) for any indecomposable object \(Y\) in \(\mathcal A\). It has Auslander-Reiten triangles. In this paper, we show that if a (connected) triangulated category has Auslander-Reiten triangles and contains loops, then its Auslander-Reiten quiver is of the form \(\widehat L_n\): \[ \underset {n}\circ{^{\longleftarrow}_{\longrightarrow}}\underset{n-1}\circ{ ^{\longleftarrow}_{\longrightarrow}}\circ\cdots\underset {2}\circ{^{\longleftarrow}_{\longrightarrow}}\underset {1}\circ\circlearrowleft. \] By using this, we prove that the Auslander-Reiten quiver of any locally finite triangulated category \(\mathcal A\) is of the form \(\mathbb{Z}\vec\Delta/G\), where \(\Delta\) is a Dynkin diagram and \(G\) is an automorphism group of \(\mathbb{Z}\vec\Delta\). For most automorphism groups \(G\), the triangulated categories with \(\mathbb{Z}\vec\Delta/G\) as their Auslander-Reiten quivers are constructed. In particular, a triangulated category with \(\widehat L_n\) as its Auslander-Reiten quiver is constructed.

MSC:

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
18E30 Derived categories, triangulated categories (MSC2010)
16G20 Representations of quivers and partially ordered sets
Full Text: DOI

References:

[1] Asashiba, H., A covering technique for derived equivalences, J. Algebra, 1, 382-415 (1997) · Zbl 0871.16006
[2] Auslander, M.; Reiten, I.; Smalø, S., Representation Theory of Artin Algebras, Stud. Adv. Math., vol. 36 (1995), Cambridge Univ. Press · Zbl 0834.16001
[3] Auslander, M.; Reiten, I., Representation theory of artin algebras III, Comm. Algebra, 3, 239-294 (1975) · Zbl 0331.16027
[4] Bongartz, K.; Gabriel, P., Covering spaces in representation theory, Invent. Math., 65, 331-378 (1982) · Zbl 0482.16026
[5] Dieterich, E., The Auslander-Reiten quiver of an isolated singularity, (Lecture Notes in Math., vol. 1273 (1987), Springer: Springer Berlin), 244-264 · Zbl 0632.14004
[6] Gabriel, P., Unzerlegbare Darstellungen, I, Manuscripta Math., 6, 71-103 (1972) · Zbl 0232.08001
[7] Gabriel, P., The universal cover of a representation-finite algebra, (Lecture Notes in Math., vol. 903 (1981), Springer: Springer Berlin), 68-105 · Zbl 0481.16008
[8] Happel, D., On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 339-389 (1987) · Zbl 0626.16008
[9] Happel, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Soc., vol. 119 (1988) · Zbl 0635.16017
[10] Happel, D., Auslander-Reiten triangles in derived category of a finite-dimensional algebra, Proc. Amer. Math. Soc., 112, 416-426 (1991)
[11] Happel, D.; Preiser, U.; Ringel, C. M., Verberg’s characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, (Lecture Notes in Math., vol. 832 (1980), Springer: Springer Berlin), 280-294 · Zbl 0446.16032
[12] Happel, D.; Preiser, U.; Ringel, C. M., Binary polyhedral groups and Euclidean diagrams, Manuscript Math., 31, 317-329 (1980) · Zbl 0436.20005
[13] Happel, D.; Roggenkamp, K. W., The derived category of a hereditary order, Arch. Math., 65, 216-225 (1995) · Zbl 0832.16012
[14] B. Keller, Triangulated orbit categories, preprint, 2003; B. Keller, Triangulated orbit categories, preprint, 2003
[15] Neeman, A., Triangulated categories, Ann. of Math. Stud., 148 (2001) · Zbl 0974.18008
[16] Peng, L. G.; Xiao, J., Triangulated categories and simple Lie algebras, J. Algebra, 198, 19-56 (1997) · Zbl 0893.16007
[17] Peng, L. G.; Xiao, J., Triangulated categories and Kac-Moody algebras, Invent. Math., 140, 563-603 (2000) · Zbl 0966.16006
[18] Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 295-366 (2002) · Zbl 0991.18009
[19] Riedtmann, Chr., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 199-224 (1980) · Zbl 0444.16018
[20] Ringel, C. M., Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., vol. 1099 (1984), Springer: Springer Berlin · Zbl 0546.16013
[21] Tachikawa, H.; Wakamatsu, T., Cartan matrices and Grothendieck groups of stable categories, J. Algebra, 144, 390-398 (1991) · Zbl 0753.16004
[22] Wiedemann, A., Orders with loops in their Auslander-Reiten graph, Comm. Algebra, 9, 641-656 (1981) · Zbl 0466.16005
[23] Xiao, J.; Zhu, B., Relations for the Grothendieck groups of triangulated categories, J. Algebra, 257, 37-50 (2002) · Zbl 1021.18004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.