×

Notes on certain \((0,2)\) correlation functions. (English) Zbl 1109.81066

Summary: In this paper we describe some correlation function computations in perturbative heterotic strings that, for example, in certain circumstances can lend themselves to a heterotic generalization of quantum cohomology calculations. Ordinary quantum chiral rings reflect worldsheet instanton corrections to correlation functions involving products of elements of Dolbeault cohomology groups on the target space. The heterotic generalization described here involves computing worldsheet instanton corrections to correlation functions defined by products of elements of sheaf cohomology groups. One must not only compactify moduli spaces of rational curves, but also extend a sheaf (determined by the gauge bundle) over the compactification, and linear sigma models provide natural mechanisms for doing both. Euler classes of obstruction bundles generalize to this language in an interesting way.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
32L81 Applications of holomorphic fiber spaces to the sciences

References:

[1] Adams, Adv. Theor. Math. Phyp., 7, 865 (2004)
[2] Distler, J.; Greene, B.; Morrison, D., Resolving singularities in (0,2) models, Nucl. Phys., B481, 289-312 (1996) · Zbl 1049.81585
[3] Beasley, JHEP, 0310, 065 (2003) · doi:10.1088/1126-6708/2003/10/065
[4] Dine, M.; Seiberg, N.; Wen, X.-G.; Witten, E., Nonperturbative effects on the string worldsheet, Nucl. Phys., B278, 769-789 (1986)
[5] Witten, E.; Bagger, J., Quantization of Newton’s constant in certain supergravity theories, Phys. Lett., B115, 202-206 (1982)
[6] Distler, J.: Notes on \(####\) sigma models. In Trieste 1992, Proceedings, String theory and quantum gravity ’92, Singapore: world scientific, 1992, pp. 234-256
[7] Schwarz, Lett. Math. Phys., 38, 91 (1996) · Zbl 0859.58004 · doi:10.1007/BF00398301
[8] Silverstein, E.; Witten, E., Criteria for conformal invariance of (0,2) models, Nucl. Phys., B444, 161-190 (1995) · Zbl 0990.81666
[9] Berglund, P.; Candelas, P.; Ossa, X.; Derrick, E.; Distler, J.; Hubsch, T., On the instanton contributions to the masses and couplings of, Nucl. Phys., B454, 127-163 (1995) · Zbl 0925.81153
[10] Basu, A.; Sethi, S., Worldsheet stability of (0,2) linear sigma models, Phys. Rev., D68, 025003 (2003)
[11] Antoniadis, I.; Gava, E.; Narain, K.; Taylor, T., Topological amplitudes in string theory, Nucl. Phys., B413, 162-184 (1994) · Zbl 1007.81522
[12] Distler, J., Greene, B.: Aspects of (2,0) string compactifications. Nucl. Phys. B304, 1-62 (1988)
[13] Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Boston: Birkhäuser, 1980 · Zbl 0438.32016
[14] Aspinwall, Common. Math. Phys., 151, 245 (1993) · Zbl 0776.53043 · doi:10.1007/BF02096768
[15] Witten, Common. Math. Phys., 118, 411 (1988) · Zbl 0674.58047 · doi:10.1007/BF01466725
[16] Witten, E., On the structure of the topological phase of two-dimensional gravity, Nucl. Phys., B340, 281-332 (1990)
[17] Kontsevich, M.: Enumeration of rational curves via torus actions. In The Moduli Space of Curves (Texel Island, 1994), Dijkgraaf, R., Faber C., van der Geer, G. eds., Progress in Math. 129, Boston-Basel-Berlin: Birkhäuser, 1995, pp. 335-368 · Zbl 0885.14028
[18] Klyachko, Math. USSR Izvestiya, 35, 337 (1990) · Zbl 0706.14010 · doi:10.1070/IM1990v035n02ABEH000707
[19] Knutson, Adv. Theor. Math. Phys., 2, 865 (1998)
[20] Morrison, D.; Plesser, R., Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys., B440, 279-354 (1995) · Zbl 0908.14014
[21] Atiyah, Trans. Amer. Math. Soc., 85, 181 (1957) · Zbl 0078.16002 · doi:10.2307/1992969
[22] Witten, E.: Phases of \(####\) theories in two dimensions. Nucl. Phys. B403, 159-222 (1993) · Zbl 0910.14020
[23] Distler, J.; Kachru, S., (0,2) Landau-Ginzburg theory, Nucl. Phys., B413, 213-243 (1994) · Zbl 1007.81505
[24] Beauville, A.: Complex Algebraic Surfaces. Second edition, Cambridge: Cambridge University Press, 1996 · Zbl 0849.14014
[25] Sharpe, E., Kähler cone substructure, Adv. Theor. Math. Phys., 2, 1441-1462 (1999) · Zbl 1059.14500
[26] Katz, S., Sharpe, E.: Notes on certain (0,2) correlation functions, http://arxiv.org/list/hep-th/0406226, 2004, the preprint version of this paper · Zbl 1109.81066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.