×

White in time scalar advection model as a tool for solving joint composition PDF equations. (English) Zbl 1109.76027

Summary: A rapidly decorrelating velocity field model is used to derive stochastic partial differential equations (SPDE) allowing one to compute the modeled one-point joint probability density function of turbulent reactive scalars. Those SPDEs are shown to be hyperbolic advection/reaction equations. They are dealt with in a generalized sense, so that discontinuities in the scalar fields can be treated. The Eulerian Monte Carlo method thus defined is coupled with a RANS solver and applied to the computation of turbulent premixed methane flame over a backward facing step.

MSC:

76F55 Statistical turbulence modeling
76M35 Stochastic analysis applied to problems in fluid mechanics
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Carrillo, O., Ibañes, M., Garcia-Ojalvo, J., Casademunt, J., Sancho, J.M.: Intrinsinc noise-induced phase transitions: Beyond the noise interpretation. arxiv:cond-mat, Feb 2003
[2] Gardiner, C.W.: Handbook of Stochastic Methods, 2nd edn. Springer, Berlin Heidelberg New York (1985) · Zbl 0564.05031
[3] Gilbank, P., Zamuner, B.: Validation du modèle peul+ sur la configuration de marche descendante. Technical Report RT 38/4386/Y, ONERA/DEFA, 1999
[4] Kazantsev, A.P.: Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 1031–1034 (1968)
[5] Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968) · Zbl 0164.28904 · doi:10.1063/1.1692063
[6] Magre, P., Collin, G.: Application de la drasc à l’opération A3C. Technical Report R.T.S. ONERA 7/3608 EY, ONERA/DEFA, 1994
[7] Pope, S.B.: Pdf methods for turbulent reactive flows. Pror. Energy Combust. Sci. 27, 119–192 (1985) · doi:10.1016/0360-1285(85)90002-4
[8] Pope, S.B.: Turbulent Flows. Cambridge Univ. Press (2000) · Zbl 0966.76002
[9] Sabel’nikov, V.A., Soulard, O.: Rapidly decorrelating velocity field model as a tool for solving Fokker–Planck pdf equations of turbulent reactive scalars. Phys. Rev., E 72, 016301 (2005) · doi:10.1103/PhysRevE.72.016301
[10] Soulard, O.: Approches PDF pour la combustion turbulente : Prise en compte d’un spectre d’échelles turbulentes dans la modélisation du micromélange et élaboration d’une méthode de Monte Carlo Eulérienne. PhD thesis, Univ. Rouen, Jan. 2005
[11] Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust. 60, 157–172 (1998) · Zbl 0938.76041 · doi:10.1023/A:1009968902446
[12] Villermaux, J., Devillon, J.C.: Représentation de la redistribution des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. In: 2nd International Symposium on Chemical Reaction Engineering. Amsterdam, vol. B-1-13, 1972
[13] Westbrook, C.K., Dryer, F.L.: Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Comb. Sci. 10, 1–57 (1984) · doi:10.1016/0360-1285(84)90118-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.