×

On the strong ellipticity of the anisotropic linearly elastic materials. (English) Zbl 1109.74008

Summary: We derive necessary and sufficient conditions for strong ellipticity in several classes of anisotropic linearly elastic materials. Our results cover all classes in the rhombic system (nine elasticities), four classes of the tetragonal system (six elasticities) and all classes in the cubic system (three elasticities). As a special case we recover necessary and sufficient conditions for strong ellipticity in transversely isotropic materials. The central result shows that for the rhombic system strong ellipticity restricts some appropriate combinations of elasticities to take values inside a domain whose boundary is the third-order algebraic surface defined by \(x^{2}+ y^{2}+ z^{2} - 2 xyz - 1 = 0\) situated in the cube \(|x| <1, |y| <1, |z| <1\). For more symmetric situations, the general analysis restricts combinations of elasticities to range inside either a plane domain (for four classes in the tetragonal system) or in an one-dimensional interval (for the hexagonal systems, transverse isotropy and cubic system). The proof involves only the basic statement of the strong ellipticity condition.

MSC:

74B05 Classical linear elasticity
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Gurtin, M. E.; Truesdell, C., The linear theory of elasticity, Handbuch der Physik, vol. VIa/2 (1972), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York
[2] Merodio, J.; Ogden, R. W., Instabilities and loss of ellipticity in fiber-reinforced compressible nonlinearly elastic solids under plane deformation, Int. J. Solids Struct., 40, 4707-4727 (2003) · Zbl 1054.74721 · doi:10.1016/S0020-7683(03)00309-3
[3] Chiriţă, S.; Ciarletta, M., Spatial estimates for the constrained anisotropic elastic cylinder, J. Elast., 85, 189-213 (2006) · Zbl 1125.74017 · doi:10.1007/s10659-006-9081-1
[4] Simpson, H. C.; Spector, S. J., On copositive matrices and strong ellipticity for isotropic elastic materials, Arch. Ration. Mech. Anal., 84, 55-68 (1983) · Zbl 0526.73026 · doi:10.1007/BF00251549
[5] Dacorogna, B., Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension, Dyn. Syst. Ser. B, 1, 257-263 (2001) · Zbl 1055.35045
[6] Payton, R. G., Elastic Wave Propagation in Transversely Isotropic Media (1983), The Hague: Martinus Nijhoff, The Hague · Zbl 0574.73023
[7] Padovani, C., Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37, 515-525 (2002) · Zbl 1020.74006 · doi:10.1023/A:1020946506754
[8] Merodio, J.; Ogden, R. W., A note on strong ellipticity for transversely isotropic linearly elastic solids, Q. J. Mech. Appl. Math., 56, 589-591 (2003) · Zbl 1056.74006 · doi:10.1093/qjmam/56.4.589
[9] Chiriţă, S., On the strong ellipticity condition for transversely isotropic linearly elastic solids, An. St. Univ. Iasi, Matematica, f.2, 52, 113-118 (2006)
[10] Evans, K. E., Auxetic polimers: a new range of materials, Endeavour, New Series, 15, 170-174 (1991) · doi:10.1016/0160-9327(91)90123-S
[11] Gibson, L. J.; Ashby, M. F., Cellular Solids-Structure and Properties (1997), UK: Cambridge Press, UK
[12] Scarpa, F.; Tomlinson, G., Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson’s ratio values, J. Sound Vib., 230, 45-67 (2000) · Zbl 1235.74117 · doi:10.1006/jsvi.1999.2600
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.