×

Liftings of coverings of weakly ramified curves. (Relèvements des revêtements de courbes faiblement ramifiés.) (French) Zbl 1108.14024

Let \(X\) be a smooth projective curve over a perfect field \(k\) of characteristic \(p>0\) with a finite group \(G \subset \text{Aut}_k(X)\). Let \(R(X,G)\) be the versal equivariant deformation ring of \((X,G)\). The authors prove the following result:
Theorem. Let us assume that the action of \(G\) is weakly ramified (i.e. for all \(P \in X\) with uniformizer \(x\), \(G_{P,2}:=\{\sigma \in G, \text{ord}_x(\sigma x-x)>2\}\) is trivial). Then one of the following properties is satisfied :
1) \(R(X,G)\) is cancelled by \(p\).
2) the non trivial ramification groups of \(G\) whose order is divisible by \(p\) are either
a) \(\mathbb{Z}/p\mathbb{Z}\) ;
b) the dihedral group \(\mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z} \) if \(p>2\) or \((\mathbb{Z}/2\mathbb{Z})^2\) if \(p=2\) ;
c) \(A_4=(\mathbb{Z}/2\mathbb{Z})^2 \rtimes \mathbb{Z}/3\mathbb{Z}\) for \(p=2\).
In any of these cases \(R(X,G)\) is a relative complete intersection over the ring of Witt vectors \(W(k)\); in particular \(R(X,G)\) is flat over \(W(k)\).
Thus the characteristic of \(R(X,G)\) is either \(0\) or \(p\). As the authors point out, if the curve \(X\) is ordinary then the action of \(G\) is weakly ramified [S. Nakajima, Trans. Am. Math. Soc. 303, 595–607 (1987; Zbl 0644.14010)].

MSC:

14H30 Coverings of curves, fundamental group
14H10 Families, moduli of curves (algebraic)
11G20 Curves over finite and local fields

Citations:

Zbl 0644.14010
Full Text: DOI

References:

[1] Bertin, J.: Obstructions locales au relèvement de revêtements galoisiens de courbes lisses. C. R. Acad. Sci. Paris Sér. I Math. 326, 55–58 (1998) · Zbl 0952.14018
[2] Bertin, J., Mézard, A.: Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques. Invent. Math. 141, 195–238 (2000) · Zbl 0993.14014 · doi:10.1007/s002220000071
[3] Bourbaki, N.: Éléments de mathématique. I.II.I. Structures algébriques. Actual. Sci. Ind. 934, Hermann, Paris 1942
[4] Bouw, I., Wewers, S.: The local lifting problem for dihedral groups, prépublication arXiv: math.AG/0409395 2004.
[5] Chinburg, T., Harbater, D., Guralnick, R.: Lifting covers of curves, Oort groups and Bertin’s obstruction, presenté au Groupe de Travail “Automorphisms of Curves”, Leyde 2004
[6] Cornelissen, G.: Lifting an automorphism group to finite characteristic, Rend. Sem. Mat. Univ. Padova. 113, 137–139 (2005)
[7] Cornelissen, G., Kato, F.: Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic. Duke Math. J. 116(3), 431–470 (2003) · Zbl 1092.14032
[8] Cornelissen, G., Kato, F.: Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. reine angew. Math. 589, 201–236 (2005) · Zbl 1084.14030 · doi:10.1515/crll.2005.2005.589.201
[9] Green, B., Matignon, M.: Liftings of Galois covers of smooth curves. Compositio Math. 113(3), 237–272 (1998) · Zbl 0923.14006 · doi:10.1023/A:1000455506835
[10] Green, B.: Automorphisms of formal power series rings over a valuation ring, In: Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), 79–87, Fields Inst. Commun. 33, Amer. Math. Soc., Providence, RI, 2003 · Zbl 1048.13012
[11] Grothendieck, A.: Revêtements étales et groupe fondamental, (SGA 1). Lecture Notes in Math. 224, Springer-Verlag, Berlin-New York, 1971. Voir aussi: arXiv: math.AG/0206203
[12] Matignon, M.: Lifting the curve (X p -X)(Y p -Y)=1 and its automorphism group. Note non-destinée à publication (septembre 2003), voir: http://www.math.u-bordeaux.fr/\(\sim\)matignon
[13] Nakajima, S.: p-ranks and automorphism groups of algebraic curves. Trans. Amer. Math. Soc. 303(2), 595–607 (1987) · Zbl 0644.14010
[14] Oort, F.: Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero, dans: Algebraic geometry, Bowdoin, 1985, Proc. Sympos. Pure Math. 46 (1987), 2ième Partie, Amer. Math. Soc., Providence, pp. 165–195
[15] Oort, F., Sekiguchi, T., Suwa, N.: On the deformation of Artin-Schreier to Kummer. Ann. Sci. École Norm. Sup. (4) 22(3), 345–375 (1989) · Zbl 0714.14024
[16] Pagot, G.: Relèvement des actions de (Z/2Z)2, prépublication 2004
[17] Serre, J.-P.: Corps locaux. Actual. Sci. Indust. no. 1296, Hermann, Paris 1968
[18] Schlessinger, M.: Functors of Artin rings. Trans. Am. Soc. 130, 208–222 (1968) · Zbl 0167.49503 · doi:10.1090/S0002-9947-1968-0217093-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.