×

On the centralizer of the sum of commuting nilpotent elements. (English) Zbl 1106.20036

The main result of this paper answers a question of Pevtsova. The result is Theorem 21: Let \(X,Y\) be commuting nilpotent elements in \(M_n(k)\) and let \(A=X+tY\) with \(t\) an indeterminate. If \(k\) has characteristic \(p>0\), assume that \(A^{p-1}=0\). Then \(X,Y\in\text{Lie\,}R_uC\) where \(C\) is the centralizer of \(A\) in \(\text{GL}(n,k)\). Moreover, for an open subvariety of pairs \((a,b)\), \(X,Y\in\text{Lie\,}R_uC_{a,b}\), where \(C_{a,b}\) is the centralizer of \(aX+bY\) in \(\text{GL}(n,k)\). Some analogs are proved for other simple algebraic groups.

MSC:

20G15 Linear algebraic groups over arbitrary fields
17B45 Lie algebras of linear algebraic groups

References:

[1] Demazure, M.; Gabriel, P., Groupes Algébriques (1970), Masson: Masson North-Holland, Paris, Amsterdam · Zbl 0203.23401
[2] E. Friedlander, J. Pevtsova, \( \operatorname{\Pi;} \); E. Friedlander, J. Pevtsova, \( \operatorname{\Pi;} \) · Zbl 1128.20031
[3] Guralnick, R.; Liebeck, M.; MacPherson, D.; Seitz, G., Modules for algebraic groups with finitely many orbits on subspaces, J. Algebra, 196, 211-250 (1997) · Zbl 0906.20029
[4] Jantzen, J. C., Nilpotent orbits in representation theory, (Anker, J.-P.; Orsted, B., Lie Theory: Lie Algebras and Representations, Progress in Mathematics, vol. 228 (2004), Birkhäuser: Birkhäuser Boston), 1-211 · Zbl 1169.14319
[5] Kempf, G. R., Instability in invariant theory, Ann. Math., 108, 2, 299-316 (1978), MR 80c:20057 · Zbl 0406.14031
[6] Lang, S., Algebra (1993), Addison-Wesley: Addison-Wesley Readings, MA · Zbl 0848.13001
[7] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2002 (translated from French by Reinie Erné).; Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2002 (translated from French by Reinie Erné). · Zbl 0996.14005
[8] McNinch, G. J., Nilpotent orbits over ground fields of good characteristic, Math. Annal., 329, 49-85 (2004), arXiv:math.RT/0209151 · Zbl 1141.17017
[9] G.J. McNinch, Optimal \(\operatorname{SL}_2\); G.J. McNinch, Optimal \(\operatorname{SL}_2\) · Zbl 1097.20040
[10] Premet, A., Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra, 260, 338-366 (2003) · Zbl 1020.20031
[11] Premet, A., Nilpotent commuting varieties of reductive Lie algebras, Invent. Math., 154, 653-683 (2003) · Zbl 1068.17006
[12] Seitz, G. M., Unipotent elements, tilting modules, and saturation, Invent. Math., 141, 467-502 (2000) · Zbl 1053.20043
[13] T.A. Springer, Linear algebraic groups, second ed., Progress in Mathematics, vol. 9, Birkhäuser, Boston, 1998.; T.A. Springer, Linear algebraic groups, second ed., Progress in Mathematics, vol. 9, Birkhäuser, Boston, 1998. · Zbl 0927.20024
[14] T.A. Springer, R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, The Institute for Advanced Study, Princeton, NJ, 1968/69, Lecture Notes in Mathematics, vol. 131, MR 42 #3091, Springer, Berlin, 1970, pp. 167-266.; T.A. Springer, R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, The Institute for Advanced Study, Princeton, NJ, 1968/69, Lecture Notes in Mathematics, vol. 131, MR 42 #3091, Springer, Berlin, 1970, pp. 167-266.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.