×

From 1-homogeneous supremal functionals to difference quotients: relaxation and \(\Gamma\)-convergence. (English) Zbl 1105.47056

Authors’ abstract: In this paper, we consider positively 1-homogeneous supremal functionals of the type \(F(u) := \sup_{\Omega} f(x,\nabla u(x))\). We prove that the relaxation \(\overline{F}\) is a difference quotient, that is, \[ \overline{F}(u) = R^{d_F}(u) := \sup_{x,y\in\Omega,\;x\neq y} \frac{u(x)-u(y)}{d_F(x,y)}\quad \text{for every }u \in W^{1,\infty}(\Omega), \] where \({d_F}\) is a geodesic distance associated to \(F\). Moreover, we prove that the closure of the class of 1-homogeneous supremal functionals with respect to \(\Gamma\)-convergence is given exactly by the class of difference quotients associated to geodesic distances. This class strictly contains supremal functionals, as the class of geodesic distances strictly contains intrinsic distances.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI

References:

[1] Acerbi, E., Buttazzo, G., Prinari, F.: The class of functionals which can be represented by a supremum. J. Convex Anal. 9, 225–236 (2002) · Zbl 1012.49010
[2] Aronsson, G., Crandall, M.G., Juutinen, P.: A tour on the theory of absolute minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41(4), 439–505 (electronic) (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[3] Barron, E.N., Jensen, R.R.: Relaxed minimal control. SIAM J. Control and Optimization 33(4), 1028–1039 (1995) · Zbl 0824.49008 · doi:10.1137/S0363012993250530
[4] Barron, E.N., Jensen, R.R., Wang, C.Y.: Lower Semicontinuity of LFunctionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(4), 495–517 (2001) · Zbl 1034.49008 · doi:10.1016/S0294-1449(01)00070-1
[5] Barron, E.N., Liu, W.: Calculus of variations in L Appl. Math. Optim. 35, 237–263 (1997) · Zbl 0871.49017
[6] Briani, A., Davini, A.: Monge solutions for discontinuous Hamiltonians. ESAIM Control Optim. Gale. Var. 11(2), 229–251 (2005) · Zbl 1087.35023 · doi:10.1051/cocv:2005004
[7] Buttazzo, G., De Pascale, L., Fragalá, I.: Topological equivalence of some variational problems involving distances. Discrete Contin. Dynam. Systems 7(2), 247–258 (2001) · Zbl 1025.49013 · doi:10.3934/dcds.2001.7.247
[8] Buttazzo, G., De Pascale, L., Fragalá, I.: Erratum to ”Topological equivalence of some variational problems involving distances.” Discrete Contin. Dynam. Systems (to appear) · Zbl 1330.49009
[9] Camilli, F., Siconolfi, A.: Nonconvex degenerate Hamilton-Jacobi equations. Math. Z. 242(1), 1–21 (2002) · Zbl 1058.35063 · doi:10.1007/s002090100302
[10] Champion, T., De Pascale, L.: A principle of comparison with distance functions for absolute minimizes. Preprint · Zbl 1128.49024
[11] Crandall, M.G., Evans, L.C., Gariepy R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13(2), 123–139 (2001) · Zbl 0996.49019
[12] Davini, A.: Smooth approximation of weak Finsler metrics. Differential Integral Equations 18(5), 509–530 (2005) · Zbl 1212.41092
[13] Prinari, F.: {\(\gamma\)}-convergence of Lfunctionals (in preparation)
[14] De Cecco, G., Palmieri, G.: Integral distance on a Lipschitz Riemannian Manifold. Math. Z. 207(2), 223–243 (1991) · Zbl 0722.58006 · doi:10.1007/BF02571386
[15] De Cecco, G., Palmieri, G.: Distanza intrinseca su una varietá finsleriana di Lipschitz. Rend. Accad. Naz. Sci. V, XVIII, XL, Mem. Mat. 1, 129–151 (1993)
[16] De Cecco, G., Palmieri, G.: Lip manifolds: from metric to finslerian structure. Math. Z. 218, 224–237 (1995) · Zbl 0819.53014
[17] Gori, M., Maggi, F.: On the lower semicontinuity of supremal functionals. ESAIM: COCV 9, 135–143 (2003) · Zbl 1066.49010 · doi:10.1051/cocv:2003005
[18] McShane, E.J.: Extension of range of functions. Bull. Amer. Math. Soc. 40(2), 837–843 (1934) · Zbl 0010.34606 · doi:10.1090/S0002-9904-1934-05978-0
[19] Prinari, F.: Relaxation and {\(\gamma\)}-convergence of supremal functionals. Boll. Unione Mat. Ita. Sez. B Artic. Ric. Mat. (to appear) · Zbl 1178.49018
[20] Siconolfi, A.: Metric character of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 355(5), 1987–2009 (2003) · Zbl 1026.35027 · doi:10.1090/S0002-9947-03-03237-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.