×

A collaboratory for radiation therapy treatment planning optimization research. (English) Zbl 1104.92031

Summary: Intensity modulated radiation therapy treatment planning (IMRTP) is a challenging application of optimization technology. We present software tools to facilitate IMRTP research by computational scientists who may not have convenient access to radiotherapy treatment planning systems. The tools, developed within Matlab and CERR (computational environment for radiotherapy research), allow convenient access, visualization, programmable manipulation, and sharing of patient treatment planning data, as well as convenient generation of dosimetric data needed as input for treatment plan optimization research. CERR/Matlab also provides a common framework for storing, reviewing, sharing, and comparing optimized dose distributions from multiple researchers.

MSC:

92C50 Medical applications (general)
92-04 Software, source code, etc. for problems pertaining to biology
90C90 Applications of mathematical programming

Software:

Matlab; CERR
Full Text: DOI

References:

[1] 1 Ahnesjo, A., M. Saxner, and A. Trepp. (1992). ”A Pencil Beam Model for Photon Dose Calculation.” Med. Phys., 19(2), 263–273. · doi:10.1118/1.596856
[2] 2 Alber, M. and F. Nusslin. (2001). ”Optimization of Intensity Modulated Radiotherapy Under Constraints for Static and Dynamic MLC Delivery.” Phys. Med. Biol., 46(12), 3229–39. · doi:10.1088/0031-9155/46/12/311
[3] 3 Boyer, A.L. (2002). ”The Physics of Intensity-Modulated Radiation Therapy.” Physics Today, 55(9), 38–44. · doi:10.1063/1.1522214
[4] 4 Boyer, A.L., E.B. Butler, T.A. DiPetrillo, et al. (2001). ”Intensity-Modulated Radiotherapy: Current Status and Issues of Interest.” International Journal of Radiation Oncology Biology Physics, 51(4), 880–914. · doi:10.1016/S0360-3016(01)01749-7
[5] 5 Boyer, A.L., M. Goitein, and A.J. Lomax. (2002). ”Radiation in the Treatment of Cancer.” Physics Today, 55(9), 34–36. · doi:10.1063/1.1522213
[6] 6 Chen, Y., D. Michalski, Y. Xiao, and J.M. Galvin.(2001).”Automatic Aperture Selection and IMRT Plan Optimization by Beam Weight Renormalization.” Int. J. Radiat. Oncol. Biol. Phys., 51(3) Suppl. 1, 74.
[7] 6 Deasy, J. (2004). CERR: A Computational Environment for Radiotherapy Research. link from http://deasylab.info.
[8] 7 Deasy, J.O., A.I. Blanco, and V.H. Clark. (2003). ”CERR: A Computational Environment for Radiotherapy Research.” Med. Phys., 30, 979–985. · doi:10.1118/1.1568978
[9] 8 Earl, M.A., D.M. Shepard, S. Naqvi, X.A. Li, and C.X. Yu. (2003). ”Inverse Planning for Intensity Modulated Arc Therapy Using Direct Aperture Optimization.” Phys. Med. Biol., 48(9), 1075–1089. · doi:10.1088/0031-9155/48/8/309
[10] 9 Langer, M., E.K. Lee, J.O. Deasy et al. (2003). ”Operations Research Applied to Radiotherapy an NCI-NSF-Sponsored Workshop February 7–9, 2002.” Int. J. Radiat. Oncol. Biol. Phys., 57(3), 762–768. · doi:10.1016/S0360-3016(03)00720-X
[11] 10 Lee, E.K. (2004). ”Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Distributed Memory Environment.” INFORMS Journal on Computing, 16, 1–28. · Zbl 1239.90079 · doi:10.1287/ijoc.1030.0027
[12] 11 Lee, E.K., J. Deasy, M. Langer et al. (2002). Workshop on Operations Research Applied to Radiation Therapy (ORART). http://www.isye.gatech.edu/nci-nsf.orart.2002/.
[13] 12 Lee, E.K., M. Langer, J.O. Deasy et al. (2003). ”Operations Research Applied to Radiation Therapy: Current Status and Issues of Interest, Intensity Modulated Radiation Therapy Collaborative Working Group.” Ann. Op. Res., 119, 143–146. · Zbl 1038.90554 · doi:10.1023/A:1022982407025
[14] 13 Lee, E.K., J Shi, and KD Cha. (2004). ”Handling Multiple Clinical Objectives in Intensity Modulated Radiation Therapy Treatment Planning.” Medical Physics, 31(6), 1777.
[15] 14 Lee, E.K., T. Fox, and I. ocker. (2003). ”Integer Programming Applied to Intensity-Modulated Radiation Therapy Treatment Planning.” Annals of Operations Research, Optimization in Medicine, 119, 165–181. · Zbl 1046.90050 · doi:10.1023/A:1022938707934
[16] 15 Lee, E.K., T Fox, and I ocker. (2005). ”Simultaneously Beam Geometry and Intensity Map Optimization in IMRT.” International Journal of Radiation Oncology, Biology and Physics, 64(1), 301–320.
[17] 16 Romeijn, H.E., R.K. Ahuja, J.F. Dempsey et al. (2003). ”A Novel Linear Programming Approach to Fluence Map Optimization for Intensity Modulated Radiation Therapy Treatment Planning.” Phys. Med. Biol., 48(21), 3521–3542. · doi:10.1088/0031-9155/48/21/005
[18] 17 Shepard, D.M., M.A. Earl, X.A. Li, S. Naqvi, and C. Yu. (2002). ”Direct Aperture Optimization: A Turnkey Solution for Step-and-Shoot IMRT.” Med. Phys., 29(6),1007–1018. · doi:10.1118/1.1477415
[19] 18 Shepard, D.A., M.A. Earl, C.X. Yu, and Y. Xiao. (2003). ”Aperture-Based Inverse Planning, in Intensity Modulated Radiation Therapy.” In Jatinder Palta and Thomas R. Mackie (Eds.), Medical Physics Publishing.
[20] 19 Siochi, R.A. (1999). ”Minimizing Static Intensity Modulation Delivery Time Using an Intensity Solid Paradign.” Int. J. Radiat. Oncol. Biol. Phys., 43, 671–680. · doi:10.1016/S0360-3016(98)00430-1
[21] 20 Siochi, R.A. (2004). ”Modifications to the IMFAST Leaf Sequencing Optimization Algorithm.” Med. Phys., 31(12), 3267–3278. · doi:10.1118/1.1819534
[22] 21 Thieke, C., S. Nill, U. Oelfke, et al. (2002). ”Acceleration of Intensity-Modulated Radiotherapy Dose Calculation by Importance Sampling of the Calculation Matrices.” Med. Phys., 29(5), 676–681. · doi:10.1118/1.1469633
[23] 22 Webb, S. (2001). Intensity Modulated Radiation Therapy. Bristol, Institute of Physics Publishing.
[24] 23 Xiao Y., Y. Censor, D. Michalski, and J. Galvin.(2003). ”The Least-Intensity Feasible Solution for Aperture-Based Inverse Planning in Radiation Therapy.” Annals of Operations Research, 119, 183–203. · Zbl 1046.90112 · doi:10.1023/A:1022990724772
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.