×

Approximately additive Schwartz distributions. (English) Zbl 1104.39022

A distributional analogue of the Rassias inequality \(\| f(x+y)-f(x)-f(y)\| \leq \varepsilon(\| x\| ^p+\| y\| ^p)\) was investigated for \(p=4, 6, 8, \dots\) by J. Chung in [J. Math. Anal. Appl. 300, No. 2, 343–350 (2004; Zbl 1066.39028)].
In this paper, the author generalizes his previous stability result to all \(p \geq 0, p \neq 1\), and in fact for a certain general control function \(\psi(x, y)\) instead of \(\varepsilon(\| x\| ^p+\| y\| ^p)\), in the space of Schwartz (tempered) distributions.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
35K05 Heat equation
46F10 Operations with distributions and generalized functions

Citations:

Zbl 1066.39028
Full Text: DOI

References:

[1] Baker, J. A., Distributional methods for functional equations, Aequationes Math., 62, 136-142 (2001) · Zbl 0989.39009
[2] Chung, J., Hyers-Ulam-Rassias stability of Cauchy equation in the space of Schwartz distributions, J. Math. Anal. Appl., 300, 343-350 (2004) · Zbl 1066.39028
[3] Chung, J.; Chung, S.-Y.; Kim, D., The stability of Cauchy equations in the space of Schwartz distributions, J. Math. Anal. Appl., 295, 107-114 (2004) · Zbl 1053.39043
[4] Chung, J.; Chung, S.-Y.; Kim, D., Une caractérisation de l’espace de Schwartz, C. R. Acad. Sci. Paris Sér. I Math., 316, 23-25 (1993) · Zbl 0820.46033
[5] Chung, J.; Chung, S.-Y.; Kim, D., A characterization for Fourier hyperfunctions, Publ. Res. Inst. Math. Sci., 30, 203-208 (1994) · Zbl 0808.46056
[6] Chung, J.; Lee, S. Y., Some functional equations in the spaces of generalized functions, Aequationes Math., 65, 267-279 (2003) · Zbl 1035.39015
[7] Chung, S.-Y., Reformulation of some functional equations in the space of Gevrey distributions and regularity of solutions, Aequationes Math., 59, 108-123 (2000) · Zbl 0945.39013
[8] Gajda, Z., On stability of additive mappings, Internat. J. Math. Math. Sci., 14, 431-434 (1991) · Zbl 0739.39013
[9] Găvruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, 431-436 (1994) · Zbl 0818.46043
[10] Hörmander, L., The Analysis of Linear Partial Differential Operators I (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0521.35002
[11] Hyers, D. H., On the stability of the linear functional equations, Proc. Natl. Acad. Sci. USA, 27, 222-224 (1941) · Zbl 0061.26403
[12] Hyers, D. H.; Isac, G.; Rassias, Th. M., Stability of Functional Equations in Several Variables (1998), Birkhäuser · Zbl 0894.39012
[13] Isac, G.; Rassias, Th. M., On the Hyers-Ulam stability of \(ψ\)-additive mappings, J. Approx. Theory, 72, 131-137 (1993) · Zbl 0770.41018
[14] Matsuzawa, T., A calculus approach to hyperfunctions III, Nagoya Math. J., 118, 133-153 (1990) · Zbl 0692.46042
[15] Rassias, Th. M., On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251, 264-284 (2000) · Zbl 0964.39026
[16] Rassias, Th. M., On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040
[17] Schwartz, L., Théorie des distributions (1966), Hermann: Hermann Paris · Zbl 0149.09501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.