×

Bowen-Franks groups of reducible bimodal subshifts of finite type. (English) Zbl 1104.37007

Here, bimodal maps are considered. It is assumed that the critical points are periodic. Hence, using a suitable partition into intervals, the bimodal map has the Markov property, and therefore it is conjugate to a subshift of finite type. From the transition matrix one can calculate the Bowen-Franks group of the map.
In [N. Martins, R. Severino and J. Sousa Ramos, J. Difference Equ. Appl. 9, 423–433 (2003; Zbl 1018.37008)], an explicit formula for the Bowen-Franks group involving the bimodal kneading pair of the map has been derived. However, if the period of the critical points is large, long calculations are required to determine the Bowen-Franks group.
Given two bimodal kneading pairs the *-product of these pairs was introduced in the paper of J. P. Lampreia, R. Severino and J. Sousa Ramos [Grazer Math. Ber. 346, 245–254 (2004; Zbl 1061.37008)]. This product is again a bimodal kneading pair.
The main result of the present paper provides a formula to calculate the Bowen-Franks group, if the kneading pair of the map can be written as the *-product of two kneading pairs.
Reviewer: Peter Raith (Wien)

MSC:

37B10 Symbolic dynamics
37E05 Dynamical systems involving maps of the interval
20K25 Direct sums, direct products, etc. for abelian groups
15B48 Positive matrices and their generalizations; cones of matrices
15B36 Matrices of integers
Full Text: DOI

References:

[1] Bowen, R.; Franks, J., Homology for zero-dimensional nonwandering sets, Ann. of Math. (2), 106, 1, 73-92 (1977) · Zbl 0375.58018
[2] Derrida, B.; Gervois, A.; Pomeau, Y., Iteration of endomorphisms on the real axis and representation of numbers, Ann. Inst. H. Poincaré Sect. A (N.S.), 29, 3, 305-356 (1978) · Zbl 0416.28012
[3] Collet, P.; Eckmann, J.-P., Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1 (1980), Birkhäuser: Birkhäuser Boston, MA, vii+248 pp. · Zbl 0465.58018
[4] Franks, J., Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4, 1, 53-66 (1984) · Zbl 0555.54026
[5] Huang, D., Automorphisms of Bowen-Franks groups of shifts of finite type, Ergodic Theory Dynam. Systems, 21, 4, 1113-1137 (2001) · Zbl 1055.37018
[6] Lampreia, J. P.; Rica da Silva, A.; Sousa Ramos, J., Subtrees of the unimodal maps tree, Boll. Unione Mat. Ital. Sez. C (6), 5, 1, 159-167 (1987) · Zbl 0653.05024
[7] Lampreia, J. P.; Sousa Ramos, J., Symbolic dynamics of bimodal maps, Portugal. Math., 54, 1, 1-18 (1997) · Zbl 0877.58020
[8] J.P. Lampreia, R. Severino, J. Sousa Ramos, Symbolic product of bimodal kneading invariants. Iteration theory (ECIT’02), Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004, pp. 245-254.; J.P. Lampreia, R. Severino, J. Sousa Ramos, Symbolic product of bimodal kneading invariants. Iteration theory (ECIT’02), Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004, pp. 245-254. · Zbl 1061.37008
[9] Martins, N.; Severino, R.; Sousa Ramos, J., \(K\)-theory for Cuntz-Krieger algebras arising from real quadratic maps, Int. J. Math. Math. Sci., 34, 2139-2146 (2003) · Zbl 1027.46086
[10] Martins, N.; Severino, R.; Sousa Ramos, J., Bowen-Franks groups for bimodal matrices, J. Differ. Equations Appl., 9, 3-4, 423-433 (2003), Dedicated to Professor Alexander N. Sharkovsky on the occasion of his 65th birthday · Zbl 1018.37008
[11] N. Martins, R. Severino, J. Sousa Ramos, Bowen-Franks groups associated with iterated maps on the interval, Iteration theory (ECIT’02), Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004, pp. 271-282.; N. Martins, R. Severino, J. Sousa Ramos, Bowen-Franks groups associated with iterated maps on the interval, Iteration theory (ECIT’02), Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004, pp. 271-282. · Zbl 1061.37009
[12] Milnor, J.; Thurston, W., On iterated maps of the interval, (Dynamical Systems (College Park, MD, 1986-87). Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342 (1988), Springer: Springer Berlin), 465-563 · Zbl 0664.58015
[13] Milnor, J.; Tresser, C., On entropy and monotonicity for real cubic maps. With an appendix by Adrien Douady and Pierrette Sentenac, Comm. Math. Phys., 209, 1, 123-178 (2000) · Zbl 0971.37007
[14] Parry, W.; Sullivan, D., A topological invariant of flows on 1-dimensional spaces, Topology, 14, 4, 297-299 (1975) · Zbl 0314.54045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.