×

Superposition in nonlinear wave and evolution equations. (English) Zbl 1101.81054

Summary: Real and bounded elliptic solutions suitable for applying the Khare-Sukhatme superposition procedure are presented and used to generate superposition solutions of the generalized modified Kadomtsev-Petviashvili equation (gmKPE) and the nonlinear cubic-quintic Schrödinger equation (NLCQSE)

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81P05 General and philosophical questions in quantum theory

References:

[1] Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, 9th ed., New York, Dover Publications, pp. 651–652. · Zbl 0543.33001
[2] Baldwin, D. et al. (2004). Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J. Symb. Comp 37, 669–705. · Zbl 1137.35324 · doi:10.1016/j.jsc.2003.09.004
[3] Bronstein, I. N. et al. (2000). Taschenbuch der Mathematik 5th ed., Thun und Frankfurt am Main, Verlag Harri Deutsch, pp. 40–41.
[4] Chandrasekharan, K. (1985). Elliptic Functions, Berlin, Springer, p. 44. · Zbl 0575.33001
[5] Cooper, F. et al. (2002). Periodic solutions of nonlinear equations obtained by linear superposition. J. Phys. A: Math. Gen 35, 10085–10100. · Zbl 1039.35098 · doi:10.1088/0305-4470/35/47/309
[6] Drazin. P. G. (1983). Solitons, Cambridge, Cambridge University Press, p. 15.
[7] Hereman, W. et al. (1986). Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method. J. Phys. A: Math. Gen 19, 607–628. · Zbl 0621.35080 · doi:10.1088/0305-4470/19/5/016
[8] Jaworski, M. and Lakshmanan, M. (2003). Comment on ”Linear superposition in nonlinear equations.”Phys. Rev. Lett 90, 239401–1. · doi:10.1103/PhysRevLett.90.239401
[9] Khare, A. and Sukhatme, U. (2002). Cyclic identities involving Jacobi elliptic functions. J. Math. Phys 43, 3798–3806. · Zbl 1060.33026 · doi:10.1063/1.1484541
[10] Khare, A. and Sukhatme, U. (2002). Linear superposition in nonlinear equations. Phys. Rev. Lett 88, 244101-1–244101-4. · doi:10.1103/PhysRevLett.88.244101
[11] Khare, A. et al. (2003). Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys 44, 1822–1841. · Zbl 1062.33020 · doi:10.1063/1.1560856
[12] H. W. (1996). Traveling-wave solutions of the cubic-quintic Schrödinger equation. Phys. Rev. E 54, 4312–4320. · Zbl 0979.78016 · doi:10.1103/PhysRevE.54.4312
[13] Schürmann, H. W. and Serov, V. S. (2004). Traveling wave solutions of a generalized modified Kadomtsev-Petviashvili equation. J. Math. Phys 45, 2181–2817. · Zbl 1071.35115 · doi:10.1063/1.1737813
[14] Schürmann, H. W. and Serov, V. S. (2004). Weierstrass’ solutions to certain nonlinear wave and evolution equations. Proc. Progress in Electromagnetics Research Symposium March 28–31 (Pisa), pp. 651–654.
[15] Wadati, M. et al. (1992). A new hamiltonian amplitude equation governing modulated wave instabilities. J. Phys. Soc. Jpn 61, 1187–1193. · Zbl 1112.35354 · doi:10.1143/JPSJ.61.1187
[16] Weierstrass, K. (1915). Mathematische Werke V, New York, Johnson, pp. 4–16, Whittaker, E. T. and Watson, G. N. (1927) A Course of Modern Analysis, Cambridge, Cambridge University Press, p. 454.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.