×

Expansions of inverse semigroups. (English) Zbl 1101.20030

Let \(\tau\colon S\to T\) be a morphism between inverse semigroups. An expansion is then a functor such that the morphism \(F(\tau)\colon F(S)\to F(T)\) satisfies \(F(\tau)\eta_T=\eta_S\tau\), where \(\eta_T,\eta_S\) are natural morphisms from \(F(T)\) and \(F(S)\) onto \(T\) and \(S\), respectively.
In this paper two new expansions are introduced. The first generalizes an expansion of Margolis and Meakin for the group case and is the freest idempotent-pure expansion of an inverse semigroup. This expansion is used to show, for example, the decidability of certain word problems in the Malcev product of varieties of inverse semigroups.
The second generalizes the Birget-Rhodes prefix expansion with an application outlined to partial actions of inverse semigroups. A new class of idempotent-pure homomorphisms is introduced called \(F\)-morphisms as they play the same role in the theory of idempotent-pure homomorphisms that \(F\)-inverse monoids play in the theory of \(E\)-unitary inverse semigroups.

MSC:

20M18 Inverse semigroups
20M15 Mappings of semigroups
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(90)90057-O · Zbl 0691.20044 · doi:10.1016/0022-4049(90)90057-O
[2] Lawson, Inverse Semigroups: The theory of partial symmetries (1998) · Zbl 1079.20505 · doi:10.1142/3645
[3] DOI: 10.1142/S0218196704001657 · Zbl 1056.20047 · doi:10.1142/S0218196704001657
[4] DOI: 10.1016/S0022-4049(97)00110-2 · Zbl 0934.20045 · doi:10.1016/S0022-4049(97)00110-2
[5] DOI: 10.1090/S0002-9939-98-04575-4 · Zbl 0910.46041 · doi:10.1090/S0002-9939-98-04575-4
[6] DOI: 10.1112/jlms/s2-1.1.399 · Zbl 0184.03502 · doi:10.1112/jlms/s2-1.1.399
[7] Brown, Pacific J. Math. 36 pp 285– (1971) · Zbl 0211.33504 · doi:10.2140/pjm.1971.36.285
[8] Blyth, Residuation theory 102 (1972)
[9] DOI: 10.1016/0021-8693(89)90199-3 · Zbl 0668.20048 · doi:10.1016/0021-8693(89)90199-3
[10] DOI: 10.1016/0022-4049(84)90092-6 · Zbl 0546.20055 · doi:10.1016/0022-4049(84)90092-6
[11] DOI: 10.1007/BF03025748 · Zbl 0769.20027 · doi:10.1007/BF03025748
[12] DOI: 10.1017/S0013091599001017 · Zbl 0990.20043 · doi:10.1017/S0013091599001017
[13] Schein, Czechoslovak Math. J. 23 pp 575– (1973)
[14] DOI: 10.2307/1999774 · Zbl 0484.20026 · doi:10.2307/1999774
[15] Petrich, Inverse semigroups (1984)
[16] O’Carroll, Semigroup Forum 3 pp 652– (1971)
[17] McFadden, Acta Sci. Math. Szeged 28 pp 241– (1967)
[18] DOI: 10.1016/0022-4049(89)90054-6 · Zbl 0676.20045 · doi:10.1016/0022-4049(89)90054-6
[19] Margolis, Canad. J. Math. 42 pp 1084– (1990) · Zbl 0726.20040 · doi:10.4153/CJM-1990-058-9
[20] DOI: 10.2307/2154268 · Zbl 0795.20043 · doi:10.2307/2154268
[21] DOI: 10.1016/0022-4049(89)90052-2 · Zbl 0676.20037 · doi:10.1016/0022-4049(89)90052-2
[22] DOI: 10.1090/S0002-9947-01-02774-X · Zbl 0980.20067 · doi:10.1090/S0002-9947-01-02774-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.