×

Zero-dimensional imbeddability. (English) Zbl 1101.13007

Every noetherian ring is imbeddable into a 0-dimensional ring. M. Arapovi [Glas. Mat. Ser. III 18(38), 53–59 (1983; Zbl 0521.13005)] gave a general criterion for this kind of imbeddability in the case of arbitrary commutative rings. The author reformulates Arapovich’s theorem with the help of the index of idempotence. Moreover, he studies imbeddability into particular 0-dimensional rings such as quasi-local rings, rings having a finite spectrum and Nagata rings.

MSC:

13A99 General commutative ring theory
13A15 Ideals and multiplicative ideal theory in commutative rings
13B02 Extension theory of commutative rings
13E05 Commutative Noetherian rings and modules

Citations:

Zbl 0521.13005
Full Text: DOI

References:

[1] Anderson D. F., Expo. Math. 6 pp 145– (1989)
[2] Arapovic M., Glas. Mat. Ser. III 18 pp 47– (1983)
[3] Arapovic M., Glas. Mat. Ser. III 18 pp 53– (1983)
[4] Gilmer R., Zero-Dimensional Commutative Rings pp 27– (1995) · Zbl 0859.13005
[5] Gilmer R., Non-Noetherian Commutative Rings pp 229– (2000)
[6] DOI: 10.1090/S0002-9939-1992-1095223-0 · doi:10.1090/S0002-9939-1992-1095223-0
[7] DOI: 10.2307/2154348 · Zbl 0778.13012 · doi:10.2307/2154348
[8] Huckaba J., Commutative Rings with Zero Divisors (1988) · Zbl 0637.13001
[9] Izelgue L., Comm. Alg. 30 pp 5123– (2002)
[10] Maroscia P., Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56 pp 451– (1974)
[11] Shapiro J., Zero-Dimensional Commutative Rings pp 347– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.