×

Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients. (English) Zbl 1100.35114

The authors are concerned with the linear hyperbolic equation \[ \begin{split} D_t^2u(x,t) - p(x,t)\Delta u(x,t) - \sum_{k=1}^n\,q_k(x,t)D_{x_k}u(x,t)\\ - q_{n+1}(x,t)D_tu(x,t) - q_0(x,t)u(x,t)=0,\quad (x,t)\in \Omega\times (-T,T), \end{split}\tag{1} \] where \(\Omega\subset {\mathbb R^n}\) is a bounded domain with a boundary of class \(C^2\), while the coefficients \(p\) and \(q_j\) satisfy the properties: (i) \(p\in C^1({\overline \Omega}\times {\mathbb R})\); (ii) \(p(x,t)>0\) for all \((x,t)\in {\overline \Omega}\times {\mathbb R}\); (iii) \(q_j\in L^\infty(\Omega\times {\mathbb R})\), \(j=0,\ldots,n+1\).
The authors show a local (conditioned) stability result related to a point \(x_0\in \partial \Omega\) such that: (iv) \(D_\nu p(x_0,0)\leq 0\), \(\nu\) denoting the exterior normal derivative; (v) \(B(x_0,\delta)\cap \Omega\) is convex for some \(\delta>0\). Under the a priori given estimate \(\| u\| _{H^1(\Omega\times (-T,T))}\leq M\) it can be proved that there exist \(y\in {\mathbb R}^n\), \(\beta>0\), \(r_1>0\), \(\gamma>0\), \(C>0\) and \(\kappa\in (0,1)\) such that \(x_0\in Q_\gamma(y)=\{(x,t)\in \Omega \times {\mathbb R}: | x| \leq r_1,\;| x-y| ^2-\beta t^2>\gamma\}\) and \[ \| u\| _{Q_\gamma(y)}\leq C{\mathcal E}^\kappa({\mathcal E}^{1-\kappa}+M^{1-\kappa}), \] where \[ \begin{aligned} {\mathcal E} = &\| u\| _{H^{3/2}((\partial \Omega\cap B(x_0,\delta))\times (-T,T))} + \| u\| _{H^{2}((-T,T);L^2(\partial \Omega\cap B(x_0,\delta)))}\\ +&\| D_\nu u\| _{H^{2}((-T,T);L^2(\partial \Omega\cap B(x_0,\delta)))} +\| D_\nu u\| _{L^{2}((-T,T);H^{1/2}(\partial \Omega\cap B(x_0,\delta)))}.\end{aligned} \] Such a property immediately implies a unique continuation result, i.e., if \(u=| \nabla u| =0\) on \(\Gamma \times (-T,T)\), \(\Gamma\) being an open set in \(\partial \Omega\), then there exists a neighborhood \(U\) of \((x_0,0)\) such that \(u=0\) in \(U\).

MSC:

35R25 Ill-posed problems for PDEs
35L10 Second-order hyperbolic equations
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] DOI: 10.1137/0330055 · Zbl 0786.93009 · doi:10.1137/0330055
[2] Cheng J., J. Math. Kyoto Univ. 43 pp 475– (2003)
[3] L., Math. 302 pp 443– (1986)
[4] L. Hormander, Linear Partial Differential Operators. Springer-Verlag, Berlin, 1963.
[5] Boston pp 179– (1997)
[6] V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin, 1998. · Zbl 0908.35134
[7] Berlin pp 93– (2004)
[8] Kazemi M., Appl. Anal. 50 pp 93– (1993)
[9] DOI: 10.1070/SM1987v058n01ABEH003103 · Zbl 0656.35146 · doi:10.1070/SM1987v058n01ABEH003103
[10] DOI: 10.1088/0266-5611/7/4/007 · Zbl 0744.35065 · doi:10.1088/0266-5611/7/4/007
[11] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrect, 2004. · Zbl 1069.65106
[12] V. Komornik, Exact Controllability and Stabilization, The Multiplier Method. John Wiley & Sons, Chichester, 1994. · Zbl 0937.93003
[13] V. Komornik, Exact controllability in short time for the wave equation. Ann. de l’I.H.P., Anal. Non Lineaire (1989) 6, 153-164. · Zbl 0672.49025
[14] Lasiecka I., New York pp 215– (1997)
[15] DOI: 10.1006/jmaa.1999.6348 · Zbl 0931.35022 · doi:10.1006/jmaa.1999.6348
[16] Lasiecka I., Contemp. Math. 268 pp 227– (2000)
[17] J.L. Lions, Controlabilite Exacte Perturbation et Stabilisation de Systemes Distribues. Masson, Paris, 1988.
[18] Commun. in Partial Differential Equations 16 pp 789– (1991)
[19] V. G. Romanov, Inverse Problems of Mathematical Physics. VNU Science Press, Utrecht, 1987.
[20] Commun. in Partial Differential Equations 20 pp 855– (1995)
[21] DOI: 10.1137/S0363012997331482 · Zbl 0951.35069 · doi:10.1137/S0363012997331482
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.