×

Area preserving transformations in non-commutative space and NCCS theory. (English) Zbl 1099.81552

Summary: We propose a heuristic rule for the area transformation on the non-commutative plane. The non-commutative area preserving transformations are quantum deformations of the classical symplectic diffeomorphisms. The area preservation condition is formulated as a field equation in the non-commutative Chern-Simons gauge theory. A higher-dimensional generalization is suggested and the corresponding algebraic structure – the infinite-dimensional sin-Lie algebra – is extracted. As an illustrative example the second-quantized formulation for electrons in the lowest Landau level is considered.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T05 Axiomatic quantum field theory; operator algebras

References:

[1] R. Jackiw, Non-commuting fields and non-Abelian fluids, hep-th/0305027
[2] R. Jackiw, S.-Y. Pi, Phys. Rev. Lett. 88, 111603 (2002) · doi:10.1103/PhysRevLett.88.111603
[3] R. Jackiw, S.-Y. Pi, A. Polychronakos, Ann. Phys. (NY) 301, 157 (2002) · doi:10.1016/S0003-4916(02)96290-1
[4] L. Susskind, The quantum Hall fluid and non-commutative Chern-Simons field theory, hep-th/0101029
[5] M. Eliashvili, G. Tsitsishvili, Int. J. Mod. Phys. B 14, 1429 (2000)
[6] R.J. Szabo, Phys. Rep. 378, 207 (2003) · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[7] R. Jost, Rev. Mod. Phys. 36, 572 (1964) · doi:10.1103/RevModPhys.36.572
[8] V.I. Arnold, Mathematical methods of classical mechanics (Springer-Verlag, Berlin 1978) · Zbl 0386.70001
[9] A.M. Perelomov, Generalized coherent states and their applications (Springer-Verlag, Berlin 1986) · Zbl 0605.22013
[10] J. Madore, An introduction to non-commutative geometry and its physical applications (Cambridge University Press 1999), · Zbl 0942.58014
[11] M. Eliashvili, G. Tsitsishvili, Int. J. Mod. Phys. B 16, 3725 (2002) · doi:10.1142/S0217979202014796
[12] S. Bahcall, L. Susskind, Int. J. Mod. Phys. B 5, 2735 (2002) · doi:10.1142/S0217979291001085
[13] R. Manvelyan, R. Mkrtchyan, Phys. Lett. B 327, 47 (1994) · doi:10.1016/0370-2693(94)91526-1
[14] D.B. Fairlie, P. Fletcher, C.K. Zachos, Phys. Lett. B 218, 203 (1989) · Zbl 0689.17018 · doi:10.1016/0370-2693(89)91418-4
[15] P. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York 1964)
[16] R. Jackiw, Nucl. Phys. Proc. Suppl. 108, 30 (2002) · Zbl 1080.81615 · doi:10.1016/S0920-5632(02)01302-6
[17] N. Seiberg, E. Witten, JHEP 9909, 032 (1999) · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[18] S. Iso, D. Karabali, B. Sakita, Phys. Lett. B 196, 142 (1992)
[19] J. Martinez, M. Stone, Int. J. Mod. Phys. B 7, 4389 (1993) · doi:10.1142/S0217979293003723
[20] A. Cappelli, C. Trugenberger, G. Zemba, Nucl. Phys. B 396, 465 (1993) · doi:10.1016/0550-3213(93)90660-H
[21] Z.F. Ezawa, Quantum Hall effects (World Scientific, Singapore 2000) · Zbl 0974.81066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.