×

Twisted elastic rings and the rediscoveries of Michell’s instability. (English) Zbl 1098.74034

Summary: Elastic rings become unstable when sufficiently twisted. This fundamental instability plays an important role in the modeling of DNA mechanics and in cable engineering. In 1962, E. E. Zajac computed the value of the critical twist for the instability [J. Appl. Mech. 29, 136–142 (1962; Zbl 0106.38005)]. This critical value was rediscovered in 1979 by C. J. Benham [Biopolymers 18, 609–623 (1979)] and independently by M. Le Bret [Biopolymers 23, 1835-1867 (1984)] in elastic models for DNA; unstable rings have since become an important example of elastic instabilities in rods both for the development of new methods and in applications. The purpose of this note is to show that the problem had been completely solved by John Henry Michell in 1889 in a rather elegant manner and to reflect on its history and modern developments.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G60 Bifurcation and buckling
74-03 History of mechanics of deformable solids
74A60 Micromechanical theories
01A60 History of mathematics in the 20th century
01A55 History of mathematics in the 19th century

Citations:

Zbl 0106.38005
Full Text: DOI

References:

[1] Michell, J.H.: On the stability of a bent and twisted wire. Messenger of Math. 11, 181–184, (1889–1990)
[2] Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995) · Zbl 0820.73002
[3] Benham, C.J.: An elastic model of the large structure of duplex DNA. Bioploymers 18, 609–623 (1979) · doi:10.1002/bip.1979.360180310
[4] Benham, C.J.: Geometry and mechanics of DNA superhelicity. Biopolymers 22, 2477–2495 (1983) · doi:10.1002/bip.360221112
[5] Vologodskii, A.: Topology and Physics of Circular DNA. CRC Press, Boca Raton (1992)
[6] Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105, 5626–5646 (1996) · doi:10.1063/1.472373
[7] Silk, W.K.: On the curving and twining of stems. Environmental Exp. Bot. 29, 95–109 (1989) · doi:10.1016/0098-8472(89)90042-7
[8] Goriely, A., Tabor, M.: Spontaneous helix-hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564–1567 (1998) · doi:10.1103/PhysRevLett.80.1564
[9] Goldstein, R.E., Goriely, A., Hubber, G., Wolgemuth, C.: Bistable helices. Phys. Rev. Lett. 84, 1631–1634 (2000) · doi:10.1103/PhysRevLett.84.1631
[10] Maddocks, J.H.: Bifurcation theory, symmetry breaking and homogenization in continuum mechanics descriptions of DNA. In: Givoli, M.J., Grote, D., Papanicolaou, G. (eds.) A Celebration of Mathematical Modeling: The Joseph B. Keller Anniversary Volume, pp. 113–136. Kluwer (2004)
[11] Thomson, W.T., Tait, P.G.: Treatise on Natural Philosophy. Cambridge (1867) · JFM 15.0767.01
[12] Michell, J.H.: The small deformation of curves and surfaces with applications to the vibration of a helix and a circular ring. Messenger of Math. 19, 68–82 (1889–90)
[13] Cherry, T.M.: J.H. Michell. Australian dictionary of biography 19, 494–495 (1986) ( http://gutenberg.net.au/dictbiog/0-dict-biogMa-Mo.html )
[14] Tuck, E.O.: The wave resistance formula of J.H. Michell (1898) and its significance to recent research in ship hydrodynamics. J. Austral. Math. Soc. Ser. B 30, 365–377 (1989) · Zbl 0668.76001 · doi:10.1017/S0334270000006329
[15] Michell, A.G.M.: John Henry Michell Obituary Notices of Fellows of the Royal Society 3, 363–382 (1941)
[16] Michell, J.H., Michell, A.G.M., Niedenfuhr, F.W., Radok, J.R.M.: The Collected Mathematical Works of J.H. and A.G.M. Michell. Noordhoff, Groningen, Netherlands (1964)
[17] Basset, A.B.: On the deformation of thin elastic wires. Amer. J. Math. 17, 281–317 (1895) · JFM 26.0925.01 · doi:10.2307/2369638
[18] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892) · JFM 24.0939.04
[19] Antman, S.S., Kenney, C.S.: Large buckled states of nonlinearly elastic rods under torsion, thrust and gravity. Arch. Ration. Mech. Analysis 84, 289–338 (1981) · Zbl 0472.73036
[20] Zajac, E.E.: Stability of two planar loop elasticas. ASME J. Applied Mech. 29, 136–142 (March 1962) · Zbl 0106.38005
[21] Fuller, F.B.: The writhing number of a space curve. Proc. Nat. Acad. Sci. 68, 815–819 (1971) · Zbl 0212.26301 · doi:10.1073/pnas.68.4.815
[22] Fuller, F.B.: Decomposition of the linking number of a closed ribbon: A problem from molecular biology. Proc. Natl. Acad. Sci. 78, 3557–3561 (1978) · Zbl 0395.92010 · doi:10.1073/pnas.75.8.3557
[23] Benham, C.J.: Elastic model of supercoiling. Proc. Nat. Acad. Sci. USA 74, 2397–2401 (1977) · doi:10.1073/pnas.74.6.2397
[24] LeBret, M.: Catastrophic variations of twist and writhing of circular DNA with constraint? Biopolymers 18, 1709–1725 (1979) · doi:10.1002/bip.1979.360180710
[25] LeBret, M.: Twist and writhing in short circular DNA according to first-order elasticity. Biopolymers 23, 1835–1867 (1984) · doi:10.1002/bip.360231004
[26] Benham, C.J.: Onset of writhing in circular elastic polymers. Phys. Rev. A 39, 2582–2586 (1989) · doi:10.1103/PhysRevA.39.2582
[27] Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Rational Mech. Anal. 121, 339–359 (1993) · Zbl 0784.73044 · doi:10.1007/BF00375625
[28] Tobias, I., Olson, W.K.: The effect of intrinsic curvature on supercoiling – Predictions of elasticity theory. Biopolymers 33, 639–646 (1993) · doi:10.1002/bip.360330413
[29] Yang, Y., Tobias, I., Olson, W.K.: Finite element analysis of DNA supercoiling. J. Chem. Phys. 98, 1673–1686 (1993) · doi:10.1063/1.464283
[30] Klapper, I., Tabor, M.: A new twist in the kinematics and elastic dynamics of thin filaments and ribbons. J. Phys. A 27, 4919–4924 (1994) · Zbl 0857.73049 · doi:10.1088/0305-4470/27/14/019
[31] Schlick, T.: Modeling superhelical DNA: Recent analytical and dynamical approaches. Curr. Opin. Struct. Biol. 5, 245–262 (1995) · doi:10.1016/0959-440X(95)80083-2
[32] Aldinger, J., Klapper, I., Tabor, M.: Formulae for the calculation and estimation of writhe.J. Knot Theory 4, 243–372 (1995) · Zbl 0840.57003
[33] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments I: Dynamical instabilities. Physica D 105, 20–44 (1997) · Zbl 0962.74513 · doi:10.1016/S0167-2789(96)00290-4
[34] Liu, G.H., Schlick, T., Olson, A.J., Olson, W.K.: Configurational transitions in Fourier series-represented DNA supercoils. Biophys. J. 73, 1742–1762 (1997) · doi:10.1016/S0006-3495(97)78205-5
[35] Westcott, T.P., Tobias, I., Olson, W.K.: Modeling self-contact forces in the elastic theory of DNA supercoiling. J. Chem. Phys. 107, 3967–3980 (1997) · doi:10.1063/1.474752
[36] Wiggins, C.H.: Biopolymer mechanics: Stability, dynamics, and statistics. Math. Methods Appl. Sci. 24, 1325–1335 (2001) · Zbl 1075.74591 · doi:10.1002/mma.182
[37] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. II. Nonlinear analysis. Physica D 105, 45–61 (1997) · Zbl 0962.74514 · doi:10.1016/S0167-2789(97)83389-1
[38] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. III. Instabilities of helical rods. Proc. Roy. Soc. London (A) 453, 2583–2601 (1997) · Zbl 0928.74052 · doi:10.1098/rspa.1997.0138
[39] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. IV. The spontaneous looping of twisted elastic rods. Proc. Roy. Soc. London (A) 455, 3183–3202 (1998) · Zbl 0941.74028 · doi:10.1098/rspa.1998.0297
[40] Manning, R.S., Hoffman, K.A.: Stability of \(n\) -covered circles for elastic rods with constant planar intrinsic curvature. J. Elasticity 62, 456–479 (2001) · Zbl 1036.74019 · doi:10.1023/A:1010905411426
[41] Hoffman, K.A., Manning, R.S., Maddocks, J.H.: Link, twist, energy, and the stability of DNA minicircles. Biopolymers 70, 145–157 (2003) · doi:10.1002/bip.10430
[42] Lembo, M.: On the stability of elastic annular rods. Int. J. Solids. Structures 40, 317–330 (2003) · Zbl 1020.74017 · doi:10.1016/S0020-7683(02)00546-2
[43] Hoffman, K.A.: Methods for determining stability in continuum elastic rod-models of DNA. Phil. Trans. R. Soc. Lond. A 362, 1301–1315 (2004) · Zbl 1091.92006 · doi:10.1098/rsta.2004.1382
[44] Ivey, T.A., Singer, D.A.: Knot types, homotopies and stability of closed elastic rods. Proc. London Math. Soc. 3, 429–450 (1999) · Zbl 1036.53001 · doi:10.1112/S0024611599011983
[45] Tobias, I., Coleman, B.D., Lembo, M.: A class of exact dynamical solutions in the elastic rod model of DNA with implications for the theory of fluctuations in the torsional motion of plasmids. J. Chem. Phys. 105, 2517–2526 (1996) · doi:10.1063/1.472040
[46] Qian, H., White, J.H.: Terminal twist induced continuous writhe of a circular rod with intrinsic curvature. J. Biomol. Struct. Dyn. 16, 663–669 (1998)
[47] Haijun, Z., Zhong can, O.-Y.: Spontaneous curvature-induced dynamical instability of Kirchhoff filaments: Application to DNA kink deformations. J. Chem. Phys. 110, 1247–1251 (1999) · doi:10.1063/1.478167
[48] Shipman, P., Goriely, A.: On the dynamics of helical strips. Phys. Rev. E 61, 4508–4517 (2000) · doi:10.1103/PhysRevE.61.4508
[49] Han, W., Lindsay, S.M., Dlakic, M., Harrington, R.E.: Kinked DNA. Nature 386, 563 (1997) · doi:10.1038/386563a0
[50] Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11, 3–45 (2001) · Zbl 1053.74026 · doi:10.1007/s003320010009
[51] Chouaieb, N., Maddocks, J.H.: Kirchhoff’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2005) · Zbl 1071.74031 · doi:10.1007/s10659-005-0931-z
[52] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments. Nonlinear Dyn. 21, 101–133 (2000) · Zbl 0985.74030 · doi:10.1023/A:1008366526875
[53] Tobias, I., Swigon, D., Coleman, B.D.: Elastic stability of DNA configurations. I. General theory. Phys. Rev. E 61, 747–758 (2000) · doi:10.1103/PhysRevE.61.747
[54] Coleman, B.D., Swigon, S., Tobias, I.: Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact. Phys. Rev. E 61, 759–770 (2000) · doi:10.1103/PhysRevE.61.759
[55] Coleman, B.D., Swigon, D.: Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J. Elast. 60, 173–221 (2000) · Zbl 1014.74038 · doi:10.1023/A:1010911113919
[56] Starostin, E.L.: Equilibrium configurations of a thin elastic rod with self-contacts. PAMM, Proc. Appl. Math. Mech. 1, 137–138 (2002) · Zbl 1367.74028 · doi:10.1002/1617-7061(200203)1:1<137::AID-PAMM137>3.0.CO;2-B
[57] Wolgemuth, C.W., Goldstein, R.E., Powers, T.R.: Dynamic supercoiling bifurcation of growing elastic filaments. Phys. D 190, 266–289 (2004) · Zbl 1063.74021 · doi:10.1016/j.physd.2003.10.007
[58] Domokos, G., Healey, T.: Hidden symmetry of global solutions in twisted elastic rings. J. Nonlinear Sci. 11, 47–67 (2001) · Zbl 1033.74026 · doi:10.1007/s003320010008
[59] Thompson, J.M.T., van der Heijden, G.H.M., Neukirch, S.: Super-coiling of DNA plasmids: Mechanics of the generalized ply. Proc. Roy. Soc. Lond. A 458, 959–985 (2001) · Zbl 1065.74048
[60] Panyukov, S., Rabin, Y.: Fluctuating elastic rings: Statics and dynamics. Phys. Rev. E. 64:#0011909 (2001) · doi:10.1103/PhysRevE.64.011909
[61] Tobias, I.: A theory of thermal fluctuations in DNA miniplasmids. Biophysical J. 74, 2545–2553 (1998) · doi:10.1016/S0006-3495(98)77962-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.