×

Numerical experiments with MG continuation algorithms. (English) Zbl 1097.65064

Summary: A systematic investigation of the numerical continuation algorithms for bifurcation problems (simple turning points and Hopf bifurcation points) of 2D nonlinear elliptic equations. The continuation algorithms employed are based only on iterative methods (preconditioned generalized conjugate gradient, PGCG, and multigrid, MG). PGCG is mainly used as coarse grid solver in the MG cycle. Numerical experiments were made with the MG continuation algorithms developed by [W. Hackbusch [Lect. Notes Math. 953, 20–45 (1982; Zbl 0531.65052), T. F. Meis, H. Lehman and H. Michael [Lect. Notes Math. 960, 545–557 (1982; Zbl 0505.65050) and H. D. Mittelmann and H. Weber [SIAM J. Sci. Statist. Comput. 6, 49–60 (1985; Zbl 0557.65032)]. The mathematical models selected, as test problems, are well-known diffusion-reaction systems; non-isothermal catalyst pellet and Lengyel-Epstein model of the CIMA reaction. The numerical methods proved to be efficient and reliable so that computations with fine grids can easily be performed.

MSC:

65H10 Numerical computation of solutions to systems of equations
65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations
35J65 Nonlinear boundary value problems for linear elliptic equations
65N06 Finite difference methods for boundary value problems involving PDEs
35B32 Bifurcations in context of PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

LOCA; PLTMG; PLTMGC; CGS
Full Text: DOI

References:

[1] Allgower, E. L.; Chien, C.-S.; Georg, K.; Wang, C. F., Conjugate gradient methods for continuation problems, J. Comput. Appl. Math., 38, 1 (1991) · Zbl 0753.65046
[2] Allgower, E. L.; Georg, K., Numerical path following, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis, vol. 5 (1997), North-Holland: North-Holland Amsterdam), Available online from: · Zbl 0948.65131
[3] Bank, R. E.; Chan, T. F., PLTMG: A multigrid continuation program for parameterized nonlinear elliptic systems, SIAM J. Sci. Statist. Comput., 7, 540 (1986) · Zbl 0589.65074
[4] Bank, R. E., An algebraic multilevel multigraph algorithm, SIAM J. Sci. Comput., 25, 1572 (2002) · Zbl 1006.65027
[5] R.E. Bank, PLTMG: A software package for solving elliptic partial differential equations, Users’ Guide 9.0, Dept. of Math., University of California at San Diego, La Jola, USA, 2004. Available online from: http://www.scicomp.ucsd.edu/ reb/; R.E. Bank, PLTMG: A software package for solving elliptic partial differential equations, Users’ Guide 9.0, Dept. of Math., University of California at San Diego, La Jola, USA, 2004. Available online from: http://www.scicomp.ucsd.edu/ reb/
[6] Bigge, J.; Bohl, E., Deformations of the bifurcation diagram due to discretization, Math. Comp., 45, 393 (1985) · Zbl 0606.65058
[7] Bolstad, J. H.; Keller, H. B., A multigrid continuation method for elliptic problems with turning points, SIAM J. Sci. Statist. Comput., 7, 1091 (1986)
[8] Brandt, A., Multigrid Techniques: 1984 Guide with Applications to Fluid Mechanics (1984), Dept. of Appl. Math., Weizmann Institute of Science: Dept. of Appl. Math., Weizmann Institute of Science Rehovot, Israel · Zbl 0581.76033
[9] Calvetti, D.; Reichel, L., Iterative methods for large continuation problems, J. Comput. Appl. Math., 123, 217 (2000) · Zbl 0974.65052
[10] Z. Castillo, A New Algorithm for Continuation and Bifurcation Analysis of Large Scale Free Surface Flows, PhD thesis, Rice University, Houston, USA, 2004; Z. Castillo, A New Algorithm for Continuation and Bifurcation Analysis of Large Scale Free Surface Flows, PhD thesis, Rice University, Houston, USA, 2004
[11] Chan, T. F.; Keller, H. B., Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems, SIAM J. Sci. Statist. Comput., 3, 173 (1982) · Zbl 0497.65028
[12] Chan, T. F., Techniques for large sparse systems arising from continuation methods, (Kupper, T.; Mittelmann, H.; Weber, H., Numerical Methods for Bifurcation Problems (1984), Birkhäuser: Birkhäuser Basel) · Zbl 0542.65029
[13] Cliffe, K. A.; Spence, A.; Tavener, S. J., The numerical analysis of bifurcation problems with application to fluid mechanics, Acta Numer., 9, 39 (2000) · Zbl 1005.65138
[14] Crampin, E. J.; Gaffney, E. A.; Maini, P. K., Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bull. Math. Biology, 61, 1093 (1999) · Zbl 1323.92028
[15] Dinar, N.; Keller, H. B., Computations of Taylor Vortex Flows using Multigrid Continuation Methods, Lecture Notes in Engineering, vol. 43 (1989), Springer: Springer Berlin · Zbl 0692.76036
[16] A.I. Fedoseyev, M.J. Friedman, E.J. Kansa, Continuation for nonlinear elliptic partial differential equations discretized by the multiquadric method, Int. J. Bifur. Chaos (2004), in press; A.I. Fedoseyev, M.J. Friedman, E.J. Kansa, Continuation for nonlinear elliptic partial differential equations discretized by the multiquadric method, Int. J. Bifur. Chaos (2004), in press · Zbl 1090.65550
[17] Fife, P., Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, vol. 28 (1979), Springer: Springer Berlin · Zbl 0403.92004
[18] Froment, G. F.; Bischoff, K. B., Chemical Reactor Analysis and Design (1979), Wiley: Wiley New York
[19] Gabitto, J. F.; Balakotaiah, V., Reaction-driven convection in a porous medium: II. Numerical bifurcation analysis, AIChE J., 37, 976 (1991)
[20] Glowinski, R.; Keller, H. B.; Rheinhart, L., Continuation-conjugate gradient methods for the least square solution of nonlinear boundary value problems, SIAM J. Sci. Statist. Comput., 6, 793 (1985) · Zbl 0589.65075
[21] Govaerts, W., Stable solvers and block elimination for bordered systems, SIAM J. Matrix Anal. Appl., 3, 469 (1991) · Zbl 0736.65015
[22] Govaerts, W., Solution of bordered singular systems in numerical continuation and bifurcation, J. Comput. Appl. Math., 50, 339 (1994) · Zbl 0806.65023
[23] Hackbusch, W., Multi-Grid Solution of Continuation Problems, Lecture Notes in Math., vol. 953 (1982), Springer: Springer Berlin · Zbl 0531.65052
[24] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
[25] Jarausch, H.; Mackens, W., Solving large nonlinear systems of equations by an adaptive condensation process, Numer. Math., 50, 633 (1987) · Zbl 0647.65036
[26] Jensen, O.; Mosekilde, E.; Borckmans, P.; Dewel, G., Computer simulation of Turing structures in the chlorite-iodide-malonic acid system, Phys. Scripta, 53, 243 (1996)
[27] Juncu, Gh.; Bildea, S., Bifurcation points computation of the diffusion-reaction equations, Comput. Chem. Engng., 16, 1059 (1992)
[28] Juncu, Gh.; Floarea, O., Multiplicity analysis of the 2D model of the catalytic porous wall reactor with axial flow, Comput. Chem. Engng., 19, 363 (1995)
[29] Juncu, Gh.; Floarea, O., Multiplicity pattern in the nonisothermal nonadiabatic packed bed chemical reactor, Comput. Chem. Engng., 19, 1063 (1995)
[30] Juncu, Gh.; Iliuta, I., Preconditioned cg-like methods for solving nonlinear convection-diffusion equations, Int. J. Numer. Methods Heat Fluid Flow, 5, 239 (1995) · Zbl 0825.76558
[31] Juncu, Gh., Conjugate heat and mass transfer from a solid sphere in the presence of a nonisothermal chemical reaction, Ind. Engng. Chem. Res., 37, 1112 (1998)
[32] Juncu, Gh., Preconditioning by approximations of the discrete Laplacian for 2D non-linear free convection elliptic equations, Int. J. Numer. Methods Heat Fluid Flow, 9, 586 (1999) · Zbl 0990.76060
[33] Juncu, Gh.; Popa, C., Numerical experiments with preconditioning by Gram matrix approximation for nonlinear elliptic equations, Math. Comput. Simulations, 52, 53 (2000)
[34] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalues problems, (Rabinowitz, P. H., Applications of Bifurcation Theory (1977), Academic Press: Academic Press New York) · Zbl 0581.65043
[35] Kubicek, M.; Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures (1983), Springer: Springer Berlin · Zbl 0529.65035
[36] Lengyel, I.; Epstein, I. R., Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system, Science, 251, 650 (1991)
[37] Levich, V. G., Physicochemical Hydrodynamics (1962), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[38] Meinköhn, D., Singularity theory concepts for a class of reaction-diffusion systems, Chem. Engng. Sci., 46, 265 (1991)
[39] Meijerink, J. A.; van der Vorst, H. A., Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems, J. Comput. Phys., 44, 134 (1981) · Zbl 0472.65028
[40] Meis, T. F.; Lehman, H.; Michael, H., Application of the Multigrid Method to a Nonlinear Indefinite Problem, Lecture Notes in Math., vol. 960 (1982), Springer: Springer Berlin · Zbl 0505.65050
[41] Mittelmann, H. D., Multi-Grid Methods for Simple Bifurcation Problems, Lecture Notes in Math., vol. 960 (1982), Springer: Springer Berlin · Zbl 0505.65054
[42] Mittelmann, H. D., An efficient algorithm for bifurcation problems of variational inequalities, Math. Comput., 41, 473 (1983) · Zbl 0535.65045
[43] Mittelmann, H. D.; Weber, H., Multi-grid solution of bifurcation problems, SIAM J. Sci. Statist. Comput., 6, 49 (1985) · Zbl 0557.65032
[44] Mosekilde, E.; Larsen, F.; Dewel, G.; Borckmans, P., Re-entrant hexagons and locked Turing-Hopf fronts in the CIMA reaction, Int. J. Bifur. Chaos, 8, 1003 (1998) · Zbl 0932.92036
[45] Nandakumar, K.; Weinitschke, H. J., A bifurcation study of chemically driven convection in a porous medium, Chem. Engrg. Sci., 47, 4107 (1992)
[46] Nielsen, P. H.; Villadsen, J., An analysis of the multiplicity pattern of models for simultaneous diffusion, chemical reaction and absorption, Chem. Engrg. Sci., 40, 571 (1985)
[47] Pawlowski, R. P.; Salinger, A. G.; Romero, L. A.; Shalid, J. N., The computational design and analysis of MOVPE reactors. Sandia National Laboratories, Albuquerque, USA, 2002, Available online from:
[48] Roose, D.; de Dier, B., Numerical determination of an emanating branch of Hopf bifurcation points in a two-parameter problem, SIAM J. Sci. Statist. Comput., 10, 671 (1989) · Zbl 0677.65090
[49] Salinger, A. G.; Lehoucq, R. B.; Pawlowski, R. P.; Shadid, J. N., Computational bifurcation and stability studies of the 8:1 thermal cavity problem, Int. J. Numer. Methods Fluids, 40, 1059 (2002) · Zbl 1047.76053
[50] Salinger, A. G.; Bou-Rabee, N. M.; Burroughs, E. A.; Lehoucq, R. B.; Pawlowski, R. P.; Romero, L. A.; Wilkes, E. D., LOCA 1.1: Library of Continuation Algorithms, Theory and Implementation Manual. Sandia National Laboratories, Albuquerque, USA, 2002, Available online from:
[51] Seydel, R., Efficient branch switching in systems of nonlinear equations, ISNM, 69, 181 (1983) · Zbl 0539.65037
[52] Seydel, R.; Hlavacek, V., Role of continuation in engineering analysis, Chem. Engrg. Sci., 42, 1281 (1987)
[53] Sonneveld, P., CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10, 36 (1989) · Zbl 0666.65029
[54] Stuben, K.; Trottenberg, U., Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications, Lecture Notes in Math., vol. 960 (1982), Springer: Springer Berlin · Zbl 0505.65035
[55] Weber, H., Multigrid bifurcation iteration, SIAM J. Numer. Anal., 22, 262 (1985) · Zbl 0567.65074
[56] Weinitschke, H. J.; Nandakumar, K.; Ravi Sankar, S., A bifurcation study of convective heat transfer in porous media, Phys. Fluids A, 2, 912 (1990) · Zbl 0712.76088
[57] Winters, K. H., A bifurcation study of laminar flow in a curved tube of rectangular cross-section, J. Fluid Mech., 180, 343 (1987) · Zbl 0632.76032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.