×

A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. (English) Zbl 1097.65055

The authors consider the nonsymmetric algebraic Riccati equation (NARE) in \(X\in{\mathbb R}^{m\times n}\): \(XCX-XD-AX+B=0\) and its dual equation in \(Y\in{\mathbb R}^{n\times m}\): \(YBY-YA-DY+C=0\), where \(A\in{\mathbb R}^{m\times m}\), \(D\in{\mathbb R}^{n\times n}\), \(B\) and \(C^T\in{\mathbb R}^{m\times n}\). For NARE and its dual equation to have a minimal nonnegative solution \(X\) and \(Y\) the following sufficient condition is assumed: \({\mathcal K}= \left[\begin{matrix} \phantom{-}D& -C \\ -B &\phantom{-}A\end{matrix}\right]\) is a nonsingular \(M\)-matrix. This condition implies that \(D-CX\) and \(A-BY\) are nonsingular \(M\)-matrices. The proposed generalized structure-preserving doubling algorithm (SDA) for computing the minimal nonnegative solution \(X\) and \(Y\) requires, at each step, only two \(LU\)-factorizations and several matrix computations which amount to \((64/3)n^3\) flops (assuming \(m=n\)). The convergence theory is established and a practical implementation and some error estimates are discussed. Numerical experiments using MATLAB show that SDA is about 2 to 10 times more efficient than Newton’s iteration method, and about 2 to 60 times more efficient than the fixed-point iteration methods. SDA can be easily implemented in parallel computer environments.

MSC:

65F30 Other matrix algorithms (MSC2010)
15A24 Matrix equations and identities
65Y05 Parallel numerical computation
Full Text: DOI

References:

[1] Anderson, Int. J. Control, 28, 295 (1978) · Zbl 0385.49017
[2] Bai, Numer. Math., 76, 279 (1997) · Zbl 0876.65021 · doi:10.1007/s002110050264
[3] Barlow, M., Rogers, L., Williams, D.: Wiener-Hopf factorization of matrices. In: Séminaire de Probabilités XIV, no. 784, Lecture Notes in Math., Springer-Verlag, 1980, pp. 324-331 · Zbl 0429.15007
[4] Bartels, Comm. ACM, 15, 820 (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[5] Bazarra, M., Sheraii, H., Shetty, C.: Nonlinear programming. John Wiley & Sons, 1993 · Zbl 0774.90075
[6] Benner, P.: Contributions to the numerical solutions of algebraic Riccati equations and related eigenvalue problems. PhD Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau, Chemnitz, Germany, 1997 · Zbl 0896.65047
[7] Benner, P., Byers, R.: Disk functions and their relationship to the matrix sign function. In: Proc. European Control Conf. ECC 97, Paper 936, (CD-ROM). Waterloo, Belgium, 1997, BELWARE Information Technology
[8] Benner, Num. Lin. Alg. Appl., 8, 357 (2001) · Zbl 1055.65053 · doi:10.1002/nla.251
[9] Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, 1979 · Zbl 0484.15016
[10] Chu, Lin. Alg. Appl., 396, 55 (2005) · Zbl 1151.93340 · doi:10.1016/j.laa.2004.10.010
[11] Chu, Int. J. Control, 77, 767 (2004) · Zbl 1061.93061 · doi:10.1080/00207170410001714988
[12] Golub, IEEE Trans. Auto. Control, 24, 909 (1979) · Zbl 0421.65022 · doi:10.1109/TAC.1979.1102170
[13] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. The Johns Hopkins University Press, 1996 · Zbl 0865.65009
[14] Guo, SIAM J. Matrix Analy. Appl., 23, 225 (2001) · Zbl 0996.65047 · doi:10.1137/S0895479800375680
[15] Guo, SIAM J. Matrix Analy. Appl., 22, 376 (2000) · Zbl 0973.65025 · doi:10.1137/S089547989834980X
[16] Juang, Lin. Alg. Appl., 230, 89 (1995) · Zbl 0839.15006 · doi:10.1016/0024-3795(93)00366-8
[17] Juang, SIAM J. Matrix Analy. Appl., 20, 228 (1999) · Zbl 0922.15003 · doi:10.1137/S0895479897318253
[18] Lin, W.-W., Xu, S.-F.: Analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Analy. Appl. 2005, to appear
[19] London, R., Mckean, H., Rogers, L., Williams, D.: A martingale approach to some Wiener-Hopf problems II. In: Séminaire de Probabilités XVI. no. 920, Lecture Notes in Math., Springer-Verlag, 1982, pp. 68-90 · Zbl 0485.60073
[20] Rogers, Ann. Appl. Probab., 4, 390 (1994) · Zbl 0806.60052
[21] Rogers, J. Appl. Probab., 31, 885 (1994) · Zbl 0814.60070 · doi:10.2307/3215314
[22] Sun, Math. Comp., 73, 1827 (2004) · Zbl 1054.65034 · doi:10.1090/S0025-5718-04-01667-9
[23] Varga, R.: Matrix iterative analysis. Prentice-Hall, 1962 · Zbl 0133.08602
[24] Williams, D.: A “potential-theoretic” note on the quadratic Wiener-Hopf equation for Q-matrices. In: Séminaire de Probabilités XVI. no. 920, Lecture Notes in Math., Springer-Verlag, 1982, pp. 91-94 · Zbl 0485.60074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.