×

Hermitian vector fields and special phase functions. (English) Zbl 1095.53046

Summary: We start by analyzing the Lie algebra of Hermitian vector fields of a Hermitian line bundle. Then, we specify the base space of the above bundle by considering a Galilei, or an Einstein space-time. Namely, in the first case, we consider, a fibred manifold over absolute time equipped with a space-like Riemannian metric, a space-time connection (preserving the time fibring and the space-like metric) and an electromagnetic field. In the second case, we consider a space-time equipped with a Lorentzian metric and an electromagnetic field. In both cases, we exhibit a natural Lie algebra of special phase functions and show that the Lie algebra of Hermitian vector fields turns out to be naturally isomorphic to the Lie algebra of special phase functions. Eventually, we compare the Galilei and Einstein cases.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
17B66 Lie algebras of vector fields and related (super) algebras
17B81 Applications of Lie (super)algebras to physics, etc.
53B35 Local differential geometry of Hermitian and Kählerian structures
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
55R10 Fiber bundles in algebraic topology
58A10 Differential forms in global analysis
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81S10 Geometry and quantization, symplectic methods
83C99 General relativity
83E99 Unified, higher-dimensional and super field theories

References:

[1] Abraham R., Foundations of Mechanics (1978)
[2] Canarutto D., Rep. on Math. Phys. 36 pp 95–
[3] Cohen-Tannoudji C., Quantum Mechanics (1977)
[4] DOI: 10.1103/PhysRevD.31.1841 · doi:10.1103/PhysRevD.31.1841
[5] DOI: 10.1007/BF00762191 · doi:10.1007/BF00762191
[6] García P. L., Memorias de la R. Acad. de Ciencias de Madrid, in: Cuantificacion geometrica (1979)
[7] M. Gotay, Mechanics: From Theory to Computations. (Essays in Honour of Juan-Carlos Simo), ed. (Springer, New York, 2000) pp. 271–316.
[8] A. Jadczyk, J. Janyška and M. Modugno, Geometria, Física-Matemática e Outros Ensaios, eds. A. S. Alves, F. J. Craveiro de Carvalho and J. A. Pereira da Silva (University of Coimbra, 1998) pp. 253–313.
[9] Greub W., Connections, Curvature, and Cohomology (1972) · Zbl 0322.58001
[10] A. Jadczyk and M. Modugno, Differential Geometric Methods in Theoretical Physics, eds. C. N. Yang, M. L. Ge and X. W. Zhou (World Scientific, Singapore, 1992) pp. 543–556.
[11] A. Jadczyk and M. Modugno, Galilei general relativistic quantum mechanics, Report of Department of Applied Mathematics (University of Florence, 1994) pp. 1–215. · Zbl 1004.83518
[12] Janyška J., Bollettino U.M.I. 9 pp 587–
[13] Janyška J., Rend. di Mat., S. VII 15 pp 457–
[14] Janyška J., Rend. di Mat. S. VII 18 pp 623–
[15] Janyška J., Arch. Math. (Brno) 32 pp 281–
[16] J. Janyška and M. Modugno, Opérateurs différentiels et Physique Mathématique, Textos Mat. Ser. B 24, eds. J. Vaillant and J. Carvalho e Silva (2000) pp. 161–181.
[17] DOI: 10.1088/0305-4470/35/40/304 · Zbl 1057.81050 · doi:10.1088/0305-4470/35/40/304
[18] DOI: 10.1016/j.matpur.2005.11.004 · Zbl 1113.53020 · doi:10.1016/j.matpur.2005.11.004
[19] DOI: 10.1007/BFb0079068 · Zbl 0223.53028 · doi:10.1007/BFb0079068
[20] DOI: 10.1103/PhysRevD.22.1285 · doi:10.1103/PhysRevD.22.1285
[21] Landau L., Mécanique quantique, Théorie non relativiste (1967)
[22] DOI: 10.1007/BF02895715 · doi:10.1007/BF02895715
[23] DOI: 10.1016/0926-2245(91)90030-D · Zbl 0784.53008 · doi:10.1016/0926-2245(91)90030-D
[24] DOI: 10.1007/978-94-009-3807-6 · doi:10.1007/978-94-009-3807-6
[25] M. Modugno and R. Vitolo, Atti del convegno in onore di A. Lichnerowicz, Frascati, 1995, ed. G. Ferrarese (Pitagora, Bologna, 1996) pp. 237–279.
[26] DOI: 10.1063/1.1288795 · Zbl 1050.70011 · doi:10.1063/1.1288795
[27] DOI: 10.1007/978-1-4612-6066-0 · doi:10.1007/978-1-4612-6066-0
[28] Souriau J.-M., Structures des systèmes dynamiques (1970) · Zbl 0186.58001
[29] Vitolo R., Annales de l’Institut H. Poincaré 70 pp 239–
[30] DOI: 10.1007/978-1-4757-3946-6 · doi:10.1007/978-1-4757-3946-6
[31] Woodhouse N., Geometric Quantization (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.