×

The stability of modified Runge-Kutta methods for the pantograph equation. (English) Zbl 1094.65075

The authors construct a modified Runge-Kutta method and show that it preserves the order of accuracy of the original one. They obtain necessary and sufficient conditions for asymptotic stability of the modified Runge-Kutta method with a variable mesh. Thus the \(\theta\)-methods with \(\frac12\leq\theta\leq1\), the odd stage Gauss-Legendre methods and the even stage Lobatto III A and III B methods become asymptotically stable. Numerical examples are given to illustrate the effectiveness of the method.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Alfredo Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay, IMA J. Numer. Anal. 22 (2002), no. 4, 529 – 536. · Zbl 1031.65089 · doi:10.1093/imanum/22.4.529
[2] A. Bellen, N. Guglielmi, and L. Torelli, Asymptotic stability properties of \Theta -methods for the pantograph equation, Appl. Numer. Math. 24 (1997), no. 2-3, 279 – 293. Volterra centennial (Tempe, AZ, 1996). · Zbl 0878.65064 · doi:10.1016/S0168-9274(97)00026-3
[3] Alfredo Bellen and Marino Zennaro, Numerical methods for delay differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2003. · Zbl 1038.65058
[4] Jack Carr and Janet Dyson, The functional differential equation \?’(\?)=\?\?(\?\?)+\?\?(\?), Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/75), 165 – 174 (1976). · Zbl 0344.34059
[5] G. A. Derfel, Kato problem for functional-differential equations and difference Schrödinger operators, Order, disorder and chaos in quantum systems (Dubna, 1989) Oper. Theory Adv. Appl., vol. 46, Birkhäuser, Basel, 1990, pp. 319 – 321. · Zbl 0728.34067
[6] Saber N. Elaydi, An introduction to difference equations, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999. · Zbl 0930.39001
[7] L. Fox, D. F. Mayers, J. R. Ockendon, and A. B. Tayler, On a functional differential equation, J. Inst. Math. Appl. 8 (1971), 271 – 307. · Zbl 0251.34045
[8] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. · Zbl 0576.15001
[9] A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math. 4 (1993), no. 1, 1 – 38. · Zbl 0767.34054 · doi:10.1017/S0956792500000966
[10] Arieh Iserles, Numerical analysis of delay differential equations with variable delays, Ann. Numer. Math. 1 (1994), no. 1-4, 133 – 152. Scientific computation and differential equations (Auckland, 1993). · Zbl 0828.65083
[11] Arieh Iserles and József Terjéki, Stability and asymptotic stability of functional-differential equations, J. London Math. Soc. (2) 51 (1995), no. 3, 559 – 572. · Zbl 0832.34080 · doi:10.1112/jlms/51.3.559
[12] Arieh Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math. 24 (1997), no. 2-3, 295 – 308. Volterra centennial (Tempe, AZ, 1996). · Zbl 0880.65058 · doi:10.1016/S0168-9274(97)00027-5
[13] Tosio Kato and J. B. McLeod, The functional-differential equation \?\(^{\prime}\)(\?)=\?\?(\?\?)+\?\?(\?), Bull. Amer. Math. Soc. 77 (1971), 891 – 937. · Zbl 0236.34064
[14] Toshiyuki Koto, Stability of Runge-Kutta methods for the generalized pantograph equation, Numer. Math. 84 (1999), no. 2, 233 – 247. · Zbl 0943.65091 · doi:10.1007/s002110050470
[15] Yun Kang Liu, Stability analysis of \?-methods for neutral functional-differential equations, Numer. Math. 70 (1995), no. 4, 473 – 485. · Zbl 0824.65081 · doi:10.1007/s002110050129
[16] Yunkang Liu, On the \?-method for delay differential equations with infinite lag, J. Comput. Appl. Math. 71 (1996), no. 2, 177 – 190. · Zbl 0853.65076 · doi:10.1016/0377-0427(95)00222-7
[17] Yunkang Liu, Numerical investigation of the pantograph equation, Appl. Numer. Math. 24 (1997), no. 2-3, 309 – 317. Volterra centennial (Tempe, AZ, 1996). · Zbl 0878.65065 · doi:10.1016/S0168-9274(97)00028-7
[18] J.R. Ockendon and A.B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. Edinburg Sect. A, 322 (1971), pp. 447-468.
[19] Yang Xu and MingZhu Liu, \Bbb H-stability of Runge-Kutta methods with general variable stepsize for pantograph equation, Appl. Math. Comput. 148 (2004), no. 3, 881 – 892. · Zbl 1038.65070 · doi:10.1016/S0096-3003(02)00947-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.