×

Chern-Simons-Witten configuration space integrals in knot theory. (English) Zbl 1093.57006

The first non-vanishing Massey-Milnor linkings are constructed in a systematic way by summing Chern-Simons-Witten configuration space integrals. In Section 3 (Definition 3.1), to any oriented and ordered link \(L=\{L_0,\ldots,L_n\}\) in \(\mathbb{R}^3\) with base points \(x_j \in L_j\), the authors associate inductively a formal sum of specific instances of oriented and uni-trivalent rooted trees, called Chern-Simons-Witten graphs and defined in Section 2, where the univalent vertices are supposed to be lying on the \(L_j\). For any such a graph \(\Gamma\) there is a configuration space \(\mathcal{C}\Gamma\), a product of:
\(\bullet\) a copy of \(\mathbb{R}^3\) for each trivalent vertex of \(\Gamma\),
\(\bullet\) \(L_j\) for each univalent vertex lying on the component \(L_j\) of \(L\),
\(\bullet\) sets of the form \(\{(y_1,y_2,\dots,y_k)\mid x_j\leq y_1\leq y_2\leq \dots\leq y_k \leq x_j\}\subset (L_j)^k\) corresponding to linearly ordered \(k\)-tuples of univalent vertices of \(\gamma\) on \(L_j\).
The configuration space integral of \(\Gamma\) is the integral over \({\mathcal C}\Gamma\) of the differential form constructed by taking the product, indexed by all edges of \(\Gamma\), of the pull-back of the standard area form on the unit sphere \(S^2\) via the map \[ X_1 \times X_2\rightarrow S^2,\quad (A,B) \mapsto \frac{A-B}{\mid A-B\mid} \] where \(X_i={\mathbb R}^3\) or some \(L_j\) (Definition 2.1). The main result of the paper is the topological invariance of \(L_{m,m-1,\ldots,0}\), defined as the sum of configuration space integrals associated to the formal sum of Chern-Simons-Witten graphs for \(L=\{L_0,\ldots,L_n\}\), when the corresponding sum vanishes for any proper sublink of \(L\) (Theorem 4.2). This is proved in Section 4; the idea is to show that the variation of \(L_{m,m-1,\ldots,0}\), interpreted as a \(1\)-form on the space of links of \((n+1)\)-components, is zero. Connections of \(L_{m,m-1,\ldots,0}\) with the Massey-Milnor linkings are discussed in section 5. In particular, the invariance of \(L_{m,m-1,\ldots,0}\) up to cyclic reordering (a result of Milnor) and the choice of base points \(x_j\) is proved by using the technics developped in the paper.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1007/BF01223592 · Zbl 0651.57005 · doi:10.1007/BF01223592
[2] DOI: 10.1007/BF02099438 · Zbl 0843.57005 · doi:10.1007/BF02099438
[3] DOI: 10.1007/s002200050136 · Zbl 0949.57012 · doi:10.1007/s002200050136
[4] DOI: 10.1017/CBO9780511623868 · doi:10.1017/CBO9780511623868
[5] DOI: 10.1016/0040-9383(95)93237-2 · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[6] DOI: 10.1142/S021821659500003X · Zbl 0878.57003 · doi:10.1142/S021821659500003X
[7] DOI: 10.1142/S0218216595000247 · Zbl 0861.57009 · doi:10.1142/S0218216595000247
[8] DOI: 10.1063/1.530750 · Zbl 0863.57004 · doi:10.1063/1.530750
[9] J. H. Conway, Computational Problems in Abstract Algebra (Pergamon Press, Oxford, 1967) pp. 329–358.
[10] DOI: 10.1090/S0273-0979-1985-15361-3 · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3
[11] Habegger N., Topology pp 1253–
[12] DOI: 10.1090/S0273-0979-1985-15304-2 · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[13] DOI: 10.1142/9789812796226 · doi:10.1142/9789812796226
[14] DOI: 10.1515/9781400882533 · Zbl 0821.57003 · doi:10.1515/9781400882533
[15] DOI: 10.1007/978-1-4612-0691-0 · doi:10.1007/978-1-4612-0691-0
[16] J. Milnor, A Symposium in Honor of S. Lefschetz (Princeton University Press, 1957) pp. 280–306.
[17] DOI: 10.2307/1969685 · Zbl 0055.16901 · doi:10.2307/1969685
[18] Murakami H., Kobe J. Math. 3 pp 61–
[19] Peskin M. E., An Introduction to Quantum Field Theory (1995)
[20] DOI: 10.1007/BF01239527 · Zbl 0725.57007 · doi:10.1007/BF01239527
[21] Turaev V. G., Quantum Invariants for Knots and 3-Manifolds (1994) · Zbl 0812.57003
[22] DOI: 10.1016/0370-1573(89)90123-3 · doi:10.1016/0370-1573(89)90123-3
[23] DOI: 10.1007/BF01217730 · Zbl 0667.57005 · doi:10.1007/BF01217730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.