×

A comparison of numerical models for one-dimensional Stefan problems. (English) Zbl 1092.65072

Summary: We present a critical comparison of the suitability of several numerical methods, level set, moving grid and phase field model, to address two well-known Stefan problems in phase transformation studies: melting of a pure phase and diffusional solid-state phase transformations in a binary system. Similarity solutions are applied to verify the numerical results. The comparison shows that the type of phase transformation considered determines the convenience of the numerical techniques. Finally, it is shown both numerically and analytically that the solid-solid phase transformation is a limiting case of the solid-liquid transformation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35R35 Free boundary problems for PDEs
80A22 Stefan problems, phase changes, etc.

References:

[1] Adalsteinsson, D.; Sethian, J. A., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2-22 (1999) · Zbl 0919.65074
[2] Caginalp, G., Stefan and Hele-Shaw type models as asymptotic of the phase field equations, Phys. Rev. A, 39, 5887-5896 (1989) · Zbl 1027.80505
[3] Caginalp, G.; Lin, J. T., A numerical analysis of an anisotropic phase field model, IMA J. Appl. Math., 39, 51-66 (1987) · Zbl 0663.35098
[4] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving Stefan problems, J. Comput. Phys., 135, 8-29 (1997) · Zbl 0889.65133
[5] Crank, J., Free and Moving Boundary Problems (1984), Clarendon Press: Clarendon Press Oxford · Zbl 0547.35001
[6] Evans, G. W., A note on the existence of a solution to a problem of Stefan, Q. Appl. Math., 9, 185-193 (1951) · Zbl 0043.41101
[7] Douglas, J., A uniqueness theorem for the solution of a Stefan problem, Proc. Am. Math. Soc., 8, 402-408 (1957) · Zbl 0077.40504
[8] Fabbri, M.; Voller, V. R., The phase field method in the sharp-interface limit: a comparison between model potentials, J. Comput. Phys., 130, 256-265 (1997) · Zbl 0868.65094
[9] Gibou, F.; Fedkiw, R.; Caflisch, R.; Osher, S., A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput., 19, 183-199 (2003) · Zbl 1081.74560
[10] Goodman, J.; Ostrov, D. N., On the early exercise boundary of the American put option, SIAM J. Appl. Math., 62, 1823-1835 (2002) · Zbl 1029.91028
[11] Hill, J. M., One-Dimensional Stefan Problems: An Introduction (1987), Longman Scientific Technical: Longman Scientific Technical Harlow · Zbl 0658.35002
[12] Juric, D.; Tryggvason, G., A front-tracking method for dendritic solidification, J. Comput. Phys., 123, 127-148 (1996) · Zbl 0843.65093
[13] Mackenzie, J. A.; Robertson, M. L., A moving mesh method for the solution of the one-dimensional phase field equations, J. Comput. Phys., 181, 526-544 (2002) · Zbl 1178.80007
[14] Murray, W. D.; Landis, F., Numerical and machine solutions of transient heat-conduction problems involving melting or freezing, Trans. ASME (C) J. Heat Transfer, 81, 106-112 (1959)
[15] W.J. Minkowycz, E.M. Sparrow, Advances in Numerical Heat Transfer, vol. 1, Taylor & Francis, Washington, 1997.; W.J. Minkowycz, E.M. Sparrow, Advances in Numerical Heat Transfer, vol. 1, Taylor & Francis, Washington, 1997.
[16] Voller, V. R.; Cross, M., Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transfer, 24, 545-556 (1981) · Zbl 0461.76075
[17] Voller, V. R., An implicit enthalpy solution for phase change problems: with application to a binary alloy solidification, Appl. Math. Modell., 11, 110-116 (1987) · Zbl 0621.73131
[18] Nedjar, B., An enthalpy-based finite element method for nonlinear heat problems involving phase change, Comput. Struct., 80, 9-21 (2002)
[19] Lam, Y. C.; Chai, J. C.; Rath, P.; Zheng, H.; Murukeshan, V. M., A fixed-grid method for chemical etching, Int. Commun. Heat Mass Transfer, 31, 1123-1131 (2004)
[20] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[21] Schmidt, A., Computation of three dimensional dendrites with finite elements, J. Comput. Phys., 125, 293-312 (1996) · Zbl 0844.65096
[22] Segal, G.; Vuik, C.; Vermolen, F., A conserving discretization for the free boundary in a two-dimensional Stefan problem, J. Comput. Phys., 141, 1-21 (1998) · Zbl 0931.65100
[23] Sethian, J. A., Level Set Methods and Fast Marching Methods (1999), Cambridge University Press: Cambridge University Press New York · Zbl 0929.65066
[24] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer: Springer New York · Zbl 1026.76001
[25] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[26] Vuik, C.; Cuvelier, C., Numerical solution of an etching problem, J. Comput. Phys., 59, 247-263 (1985) · Zbl 0586.65085
[27] Wheeler, A. A.; Boettinger, W. J.; McFadden, G. B., Phase field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424-7439 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.